精英家教网 > 初中数学 > 题目详情

如图,△ABC是等边三角形,D、E在BC所在的直线上,且AB•AC=BD•CE.
求证:△ABD∽△ECA.

证明:∵△ABC是等边三角形(已知),
∴∠ABC=∠ACB=60°(等边三角形的三内角相等,都等于60°),
∴∠ABD=∠ACE(等角的补角相等),
又AB•AC=BD•CE(已知),即=
∴△ABD∽△ECA(两边对应成比例且夹角相等的两三角形相似).
分析:根据等边三角形的性质得到∠ABC=∠ACB=60°,利用等角的补角相等得到∠ABD=∠ACE,然后把题中已知的等式化为比例的形式,根据两边对应成比例,且夹角对应相等的两三角形相似即可得证.
点评:本题考查了等边三角形性的性质以及相似三角形的判定,证明三角形相似的方法有:①两角对应相等两三角形相似;②两边对应成比例,且夹角对应相等两三角形相似;③三边对应成比例两三角形相似.做题时要根据已知的条件,选择合适的方法.把AB•AC=BD•CE化为比例的形式,得到两三角形的对应边成比例是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF精英家教网∥AC,EF的延长线交BC的延长线于点G.
(1)求证:△BEF是等边三角形;
(2)若BA=4,CG=2,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,△ABC是等边三角形,过AB边上一点D作BC的平行线交AC于E,则△ADE的三个内角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等边三角形,AB=4cm,则BC边上的高AD等于
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,将△ABD绕点A点逆时针方向旋转后到达△ACE的位置,那么旋转角的度数是
60°
60°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)直接写出∠ECF的度数等于
60
60
°;
(2)求证:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的长.

查看答案和解析>>

同步练习册答案