精英家教网 > 初中数学 > 题目详情
19、如图,在八边形的八个顶点处分别标上数1,2,3,4,5,6,7,8.能否使任意四个相邻顶点处的四数之和:(1)大于16;(2)大于18.若能,请填出一种情形;若不能,请说明理由.
分析:(1)可以分别设这八个数为a,b,c,d,e,f,g,h,然后将其四个数相加,根据题中给出的条件可知,这把个数的和应该≥144,判断即可得出结论.
(2)根据上题的出的结论直接判断即可解答.
解答:解:(1)能
如图①所填(答案不唯一,只须 填出一种即可)



(2)不能说理如下:
假如存在一种填法,如图②所示使任意的四个相邻顶点处的四数之和大于18,因为这些和为正整数,所以这些和必不小于19

即:a+b+c+d≥19  b+c+d+e≥19   c+d+e+f≥19   d+e+f+g≥19   e+f+g+h≥19  f+g+h+a≥19   g+h+a+b≥19     h+a+b+d≥19
把上述八式左右两边分别相加得:4(a+b+c+d+e+f+g+h)≥19×8=152
而左边=4(a+b+c+d+e+f+g+h)=4(1+2+3+4+5+6+7+8)=144
显然144≥152不可能成立
∴不存在这样的情形.
点评:本题考查了整数问题的综合运用,解题的关键是求出这八个数的最大值与题中所求的值的范围是否相符.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

(2012•青岛)问题提出:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成多少个互不重叠的小三角形?
问题探究:为了解决上面的问题,我们将采取一般问题特殊性的策略,先从简单和具体的情形入手:
探究一:以△ABC的三个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?
如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.
探究二:以△ABC的三个顶点和它内部的2个点P、Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?
在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种情况:
一种情况,点Q在图①分割成的某个小三角形内部.不妨假设点Q在△PAC内部,如图②;
另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨假设点Q在PA上,如图③.
显然,不管哪种情况,都可把△ABC分割成5个不重叠的小三角形.
探究三:以△ABC的三个顶点和它内部的3个点P、Q、R,共6个点为顶点可把△ABC分割成
7
7
个互不重叠的小三角形,并在图④中画出一种分割示意图.
探究四:以△ABC的三个顶点和它内部的m个点,共(m+3)个顶点可把△ABC分割成
(2m+1)
(2m+1)
个互不重叠的小三角形.
探究拓展:以四边形的4个顶点和它内部的m个点,共(m+4)个顶点可把四边形分割成
(2m+2)
(2m+2)
个互不重叠的小三角形.
问题解决:以n边形的n个顶点和它内部的m个点,共(m+n)个顶点可把△ABC分割成
(2m+n-2)
(2m+n-2)
个互不重叠的小三角形.
实际应用:以八边形的8个顶点和它内部的2012个点,共2020个顶点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

问题提出:以n边形的n个顶点和它内部的m个点,共(m+n)个点为顶点,可把原n边形分割成多少个互不重叠的小三角形?
问题探究:为了解决上面的问题,我们将采取一般问题特殊化的策略,先从简单和具体的情形入手,通过观察、分析,最后归纳出结论:
探究一:以△ABC的三个顶点和它内部的一个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?
如图(1),显然,此时可把△ABC分割成3个互不重叠的小三角形.
探究二:以△ABC的三个顶点和它内部的2个点P、Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?

在探究一的基础上,我们可看作在图(1)△ABC的内部,再添加1个点Q,那么点Q的位置会有两种情况:一种情况,点Q在图(1)分割成的某个小三角形内部,不妨假设点Q在△PAC内部,如图(2);另一种情况,点Q在图(1)分割成的小三角形的某条公共边上,不妨假设点Q在P上,如图(3);显然,不管哪种情况,都可把△ABC分割成5个互不重叠的小三角形.
探究三:以△ABC的三个顶点和它内部的3个点,共6个点为顶点可把△ABC分割成
7
7
个互不重叠的小三角形.
探究四:以△ABC的三个顶点和它内部的m个点,共(m+3)个点为顶点可把△ABC分割成
3+2(m-1)或2m+1
3+2(m-1)或2m+1
个互不重叠的小三角形.
探究拓展:以四边形的4个顶点和它内部的m个点,共(m+4)个点为顶点,可把四边形分割成
4+2(m-1)或2m+2
4+2(m-1)或2m+2
个互不重叠的小三角形.
问题解决:以n边形的n个顶点和它内部的m个点,共(m+n)个点为顶点,可把△ABC分割成
n+2(m-1)或2m+n-
n+2(m-1)或2m+n-
个互不重叠的小三角形.
实际应用:以八边形的8个顶点和它内部的m个点,共(m+8)个点为顶点,可把八边形分割成2013个互不重叠的小三角形吗?若行,求出m的值;若不行,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(山东青岛卷)数学(解析版) 题型:解答题

问题提出:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶

点,可把原n边形分割成多少个互不重叠的小三角形?

问题探究:为了解决上面的问题,我们将采取一般问题特殊化的策略,先从简单和具体的情形入手:

探究一:以△ABC的3个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互

不重叠的小三角形?如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.

探究二:以△ABC的3个顶点和它内部的2个点P、Q,共5个点为顶点,可把△ABC分割成多少个

互不重叠的小三角形?

在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种

情况:

一种情况,点Q在图①分割成的某个小三角形内部.不妨设点Q在△PAC的内部,如图②;

另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨设点Q在PA上,如图③.

显然,不管哪种情况,都可把△ABC分割成5个互不重叠的小三角形.

探究三:以△ABC的三个顶点和它内部的3个点P、Q、R,共6个点为顶点,可把△ABC分割成     

互不重叠的小三角形,并在图④中画出一种分割示意图.

探究四:以△ABC的三个顶点和它内部的m个点,共(m+3)个点为顶点,可把△ABC分割成       

互不重叠的小三角形.

探究拓展:以四边形的4个顶点和它内部的m个点,共(m+4)个点为顶点,可把四边形分割成

        个互不重叠的小三角形.

问题解决:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成

        个互不重叠的小三角形.

实际应用:以八边形的8个顶点和它内部的2012个点,共2020个顶点,可把八边形分割成多少个互

不重叠的小三角形?(要求列式计算)

 

查看答案和解析>>

同步练习册答案