精英家教网 > 初中数学 > 题目详情

直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.
解答:解:别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3
∵△ABC是等腰直角三角形,
∴AC=BC,
∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,
∴∠EBC=∠ACF,∠BCE=∠CAF,
在△BCE与△ACF中,

∴△BCE≌△ACF(ASA)
∴CF=BE=3,CE=AF=4,
在Rt△ACF中,
∵AF=4,CF=3,
∴AC===5,
∵AF⊥l3,DG⊥l3
∴△CDG∽△CAF,
==,解得CD=
在Rt△BCD中,
∵CD=,BC=5,
∴BD===
故选A.
点评:本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线l1∥l2∥l3∥l4,相邻两条平行线间的距离都等于1,若正方形ABCD的四个顶点分别在四条直线上,则它的面积等于(  )
A、4
B、5
C、4
2
D、5
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•济南)已知直线l1∥l2∥l3∥l4,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•株洲)如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上.若∠1=70°,∠2=50°,则∠ABC=
120
120
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在四条直线上,正方形ABCD的面积为S.
(1)如图1,已知平行线间的距离均为m,求S.(用含有m的式子表示)
(2)如图2,改变平行线之间的距离,但仍使四边形ABCD为正方形,
①求证:h1=h3
②求证:s=(h1+h2)2+h12
③若
32
h1+h2=1
,求S关于h1的函数关系式,并指出S随h1变化的规律.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线l1∥l2∥l3,直线AC和DF分别与l1、l2、l3相交于点A、B、C和D、E、F.如果AB=1,EF=3,那么下列各式中,正确的是(  )

查看答案和解析>>

同步练习册答案