精英家教网 > 初中数学 > 题目详情

若方程ax2+bx+c=0的根为x1=-2和x2=3,则二次函数y=ax2+bx+c的图象与x轴交点坐标是________.

(-2,0)、(3,0)
分析:二次函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的两根.
解答:∵当y=0时,ax2+bx+c=0,
∴二次函数y=ax2+bx+c的图象与x轴交点坐标的横坐标就是方程ax2+bx+c=0的两根;
又∵方程ax2+bx+c=0的根为x1=-2和x2=3,
∴二次函数y=ax2+bx+c的图象与x轴交点坐标是(-2,0)、(3,0).
故答案是:(-2,0)、(3,0).
点评:本题考查了抛物线与x轴的交点.注意二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0(a≠0)的联系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根;
(2)写出不等式ax2+bx+c>0的解集;
(3)写出y随x的增大而减小的自变量x的取值范围;
(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面的材料:
如果关于x的方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,则x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a

x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
4ac
4a2
=
c
a

综合得:若方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,则有x1+x2=-
b
a
x1x2=
c
a

请利用这一结论解决问题:
(1)方程x2+bx+c=0的两根为-1和3,求b与c的值;
(2)设方程2x2-3x+1=0的两根为x1,x2,求
1
x1
+
1
x2
以及2x12+2x22的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、对于一元二次方程ax2+bx+c=0(a≠0),下列说法:
①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;
②若方程ax2+bx+c=0有两个不等的实数根,则方程cx2+bx+a=0也一定有两个不等的实数根;
③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;
④若m是方程ax2+bx+c=0的一个根,则一定有b2-4ac=(2am+b)2成立,其中正确的只有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•玉林)二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=1,有如下结论:
①c<1;②2a+b=0;③b2<4ac;④若方程ax2+bx+c=0的两根为x1,x2,则x1+x2=2,
则正确的结论是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

对于一元二次方程ax2+bx+c=0(a≠0),下列说法:
①若a-b+3c=0,则方程一定有两个不相等的实数根;
②若b2-2ac<0,则方程没有实数根;
③若方程ax2+bx+c=0(a≠0)没有实数根,则方程cx2+bx+a=0也没有实数根;
④若方程ax2+bx+c=0没有实数根,则方程ax2+bx-c=0必有两个不相等的实数根;
其中正确的是(  )

查看答案和解析>>

同步练习册答案