精英家教网 > 初中数学 > 题目详情
(2013•安徽模拟)如图,△ABC的三条内角平分线相交于点O,过点O作OE⊥BC于E点,
(1)求证:∠BOD=∠COE.
(2)如果AB=17,AC=8,BC=15,利用三角形内心性质及相关知识,求OE长.
分析:(1)在△AOF中,利用三角形的内角和定理,以及角平分线的定义,可以利用∠ACB表示出∠AOF,则∠BOD即可得到,然后在直角△OCE中,利用直角三角形的两个内角互余以及角平分线的定义,即可利用∠ACB表示出∠COE,从而证得结论.
(2)先判断为直角三角形,用面积法或直角三角形内切圆半径公式求出OE=3.
解答:(1)证明:∵∠AFO=∠FBC+∠ACB=
1
2
∠ABC+∠ACB,
∴∠AOF=180°-(∠DAC+∠AF0)
=180°-[
1
2
∠BAC+
1
2
∠ABC+∠ACB]
=180°-[
1
2
(∠BAC+∠ABC)+∠ACB]
=180°-[
1
2
(180°-∠ACB)+∠ACB]
=180°-[90°+
1
2
∠ACB]
=90°-
1
2
∠ACB,
∴∠BOD=∠AOF=90°-
1
2
∠ACB,
又∵在直角△OCE中,∠COE=90°-∠OCD=90°-
1
2
∠ACB,
∴∠BOD=∠COE.

(2)解:∵AB=17,AC=8,BC=15,
∴AC2+BC2=289,
AB2=289,
∴AC2+BC2=AB2
∴△ABC为直角三角形,
∴EO=
8+15-17
2
=3.
点评:本题主要考查了角平分线的定义,三角形的外角的性质以及三角形的内角和定理以及直角三角形内切圆的半径公式等知识,正确求得∠AOF是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•安徽模拟)若关于x的方程2x-a=x-2的解为x=3,则字母a的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•安徽模拟)函数y=
4x+3  (x≤0)
x+3    (0<x≤1)
-x+5  (x>1)
的最大值为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•安徽模拟)
16
的平方根是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•安徽模拟)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.

(1)如点P为锐角△ABC的费马点.且∠ABC=60°,PA=3,PC=4,求PB的长.
(2)如图(2),在锐角△ABC外侧作等边△ACB′连结BB′.求证:BB′过△ABC的费马点P,且BB′=PA+PB+PC.
(3)已知锐角△ABC,∠ACB=60°,分别以三边为边向形外作等边三角形ABD,BCE,ACF,请找出△ABC的费马点,并探究S△ABC与S△ABD的和,S△BCE与S△ACF的和是否相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•安徽模拟)(1)图①至图③中,AB=
2
,旋转角∠CAB=30°.
思考:
如图①,当线段AB绕点A旋转至AC的位置时,则点B所经过的路径长为
2
π
6
2
π
6
;图中阴影部分的面积为
π
6
π
6


探究一
如图②,当线段AB变为以AB为直径的半圆时,将其绕点A旋转至图②中位置,则图中阴影部分的面积为
π
6
π
6

如图③,当线段AB变为等腰直角三角形ADB时,∠ADB=90°,将其绕点A旋转,使点B到点C,点D到点E.求图中阴影部分的面积S.
(2)探究二
图④中,一个不规则的图形,其中AB=a,AD=b,点B旋转到点C,旋转角∠CAB=n°(0°<n<180°),点D旋转到点E,则点B所经过的路径长为
nπa
180
nπa
180
;图中阴影部分的面积为
nπ(a2-b2)
360
nπ(a2-b2)
360

查看答案和解析>>

同步练习册答案