精英家教网 > 初中数学 > 题目详情

如图,AD⊥BC,∠BAD=∠B,∠C=65°,则∠BAC=________.

70°
分析:由等腰直角△ABD的性质求得∠BAD=45°;然后利用直角△ADC的两个锐角互余的性质求得∠DAC=25°,则易求∠BAC的度数.
解答:如图,∵AD⊥BC,
∴∠ADB=90°,
又∵∠BAD=∠B,
∴∠BAD=∠B=45°.
在直角△ADC中,∠DAC=90°-∠C=90°-65°=25°,
∴∠BAC=∠BAD+∠DAC=45°+25°=70°.
故答案是:70°.
点评:本题考查了直角三角形的性质.解题时利用了“直角三角形的两个锐角互余的性质”,当然,利用三角形内角和定理也可以解答该题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、如图,AD∥BC,则下列式子成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如图:AD∥BC,AB=AC,∠BAC=80°,则∠DAC=
50
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,AD⊥BC,DE∥AB,则∠CDE与∠BAD的关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,AD=BC,要得到△ABD≌△CDB,可以添加角的条件:∠
ADB
ADB
=∠
CBD
CBD

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.

查看答案和解析>>

同步练习册答案