·ÖÎö £¨1£©ÏÈÇóµÃµãAµÄ×ø±ê£¬È»ºóÀûÓÃÅ×ÎïÏߵĶԳÆÐÔ¿ÉÇóµÃµãBµÄ×ø±ê£¬È»ºóÇóµÃµãCµÄ×ø±ê£¬ÉèÅ×ÎïÏߵĽâÎöʽΪy=a£¨x+1£©£¨x-3£©£¬½«C£¨0£¬-3£©´úÈëÇóµÃaµÄÖµ¼´¿É£»
£¨2£©Á¬½áOP£®ÏÈÇóµÃµãDµÄ×ø±ê£¬´Ó¶ø¿ÉµÃµ½ODµÄ³¤£¬ÉèP£¨t£¬t2-2t-3£©£¬È»ºóÒÀ¾ÝËıßÐÎDCPBµÄÃæ»ý=¡÷ODBµÄÃæ»ý+¡÷OBPµÄÃæ»ý+¡÷OCPµÄÃæ»ý¿ÉµÃµ½SÓëtµÄº¯Êý¹ØÏµÊ½£¬ÀûÓÃÅä·½·¨¿ÉÇóµÃSµÄ×î´óÖµÒÔ¼°¶ÔÓ¦µÄtµÄÖµ£»
£¨3£©ÉèµãD¡äµÄ×ø±êΪ£¨a£¬a+1£©£¬O¡ä£¨a£¬a£©£¬µ±¡÷D¡äO¡äEµÄÃæ»ý£ºD¡äEB¡äµÄÃæ»ý=1£º2ʱ£¬E£¨a+1£¬a£©£¬½«µãEµÄ×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃaµÄÖµ£¬´Ó¶øµÃµ½O¡äµÄ×ø±ê£¬È»ºóÇóµÃOO¡äµÄ³¤¼´¿É£¬µ±¡÷D¡äO¡äEµÄÃæ»ý£ºD¡äEB¡äµÄÃæ»ý=2£º1ʱ£¬E£¨a+2£¬a£©£¬Í¬Àí¿ÉÇóµÃOO¡äµÄ³¤£¬´Ó¶ø¿ÉµÃµ½¡÷B¡äO¡äD¡äÆ½ÒÆµÄ¾àÀ룮
½â´ð ½â£º£¨1£©°Ñy=0´úÈëÖ±ÏߵĽâÎöʽµÃ£ºx+1=0£¬½âµÃx=-1£¬
¡àA£¨-1£¬0£©£®
¡ßÅ×ÎïÏߵĶԳÆÖáΪx=1£¬
¡àBµÄ×ø±êΪ£¨3£¬0£©£®
½«x=0´úÈëÅ×ÎïÏߵĽâÎöʽµÃ£ºy=-3£¬
¡àC£¨0£¬-3£©£®
ÉèÅ×ÎïÏߵĽâÎöʽΪy=a£¨x+1£©£¨x-3£©£¬½«C£¨0£¬-3£©´úÈëµÃ£º-3a=-3£¬½âµÃa=1£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=x2-2x-3£®
£¨2£©Èçͼ1Ëùʾ£ºÁ¬½áOP£®![]()
½«x=0´úÈëÖ±ÏßADµÄ½âÎöʽµÃ£ºy=1£¬
¡àOD=1£®
ÓÉÌâÒâ¿ÉÖªP£¨t£¬t2-2t-3£©£®
¡ßËıßÐÎDCPBµÄÃæ»ý=¡÷ODBµÄÃæ»ý+¡÷OBPµÄÃæ»ý+¡÷OCPµÄÃæ»ý£¬
¡àS=$\frac{1}{2}$¡Á3¡Á1+$\frac{1}{2}$¡Á3¡Á£¨-t2+2t+3£©+$\frac{1}{2}$¡Á3¡Át£¬ÕûÀíµÃ£ºS=-$\frac{3}{2}$t2+$\frac{9}{2}$t+6£®
Åä·½µÃ£ºS=-$\frac{3}{2}$£¨t-$\frac{3}{2}$£©2+$\frac{75}{8}$£®
¡àµ±t=$\frac{3}{2}$ʱ£¬SÈ¡µÃ×î´óÖµ£¬×î´óֵΪ$\frac{75}{8}$£®
£¨3£©Èçͼ2Ëùʾ£º![]()
ÉèµãD¡äµÄ×ø±êΪ£¨a£¬a+1£©£¬O¡ä£¨a£¬a£©£®
µ±¡÷D¡äO¡äEµÄÃæ»ý£ºD¡äEB¡äµÄÃæ»ý=1£º2ʱ£¬ÔòO¡äE£ºEB¡ä=1£º2£®
¡ßO¡äB¡ä=0B=3£¬
¡àO¡äE=1£®
¡àE£¨a+1£¬a£©£®
½«µãEµÄ×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽµÃ£º£¨a+1£©2-2£¨a+1£©-3=a£¬ÕûÀíµÃ£ºa2-a-4=0£¬½âµÃ£ºa=$\frac{1+\sqrt{17}}{2}$»òa=$\frac{1-\sqrt{17}}{2}$£®
¡àO¡äµÄ×ø±êΪ£¨$\frac{1+\sqrt{17}}{2}$£¬$\frac{1+\sqrt{17}}{2}$£©»ò£¨$\frac{1-\sqrt{17}}{2}$£¬$\frac{1-\sqrt{17}}{2}$£©£®
¡àOO¡ä=$\frac{\sqrt{2}+\sqrt{34}}{2}$»òOO¡ä=$\frac{\sqrt{34}-\sqrt{2}}{2}$£®
¡à¡÷DOBÆ½ÒÆµÄ¾àÀëΪ$\frac{\sqrt{2}+\sqrt{34}}{2}$»ò$\frac{\sqrt{34}-\sqrt{2}}{2}$£®
µ±¡÷D¡äO¡äEµÄÃæ»ý£ºD¡äEB¡äµÄÃæ»ý=2£º1ʱ£¬ÔòO¡äE£ºEB¡ä=2£º1£®
¡ßO¡äB¡ä=0B=3£¬
¡àO¡äE=2£®
¡àE£¨a+2£¬a£©£®
½«µãEµÄ×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽµÃ£º£¨a+2£©2-2£¨a+2£©-3=a£¬ÕûÀíµÃ£ºa2-a-4=0£¬½âµÃ£ºa=$\frac{-1+\sqrt{13}}{2}$»òa=$\frac{-1-\sqrt{13}}{2}$£®
¡àO¡äµÄ×ø±êΪ£¨$\frac{-1+\sqrt{13}}{2}$£¬$\frac{-1+\sqrt{13}}{2}$£©»ò£¨$\frac{-1-\sqrt{13}}{2}$£¬$\frac{-1-\sqrt{13}}{2}$£©£®
¡àOO¡ä=$\frac{-\sqrt{2}+\sqrt{26}}{2}$»òOO¡ä=$\frac{\sqrt{2}+\sqrt{26}}{2}$£®
¡à¡÷DOBÆ½ÒÆµÄ¾àÀëΪ$\frac{-\sqrt{2}+\sqrt{26}}{2}$»ò$\frac{\sqrt{2}+\sqrt{26}}{2}$£®
×ÛÉÏËùÊö£¬µ±¡÷D¡äO¡äB¡äÑØDA·½ÏòÆ½ÒÆ$\frac{\sqrt{2}+\sqrt{34}}{2}$»ò$\frac{\sqrt{2}+\sqrt{26}}{2}$µ¥Î»³¤¶È£¬»òÑØAD·½ÏòÆ½ÒÆ$\frac{\sqrt{34}-\sqrt{2}}{2}$»ò$\frac{-\sqrt{2}+\sqrt{26}}{2}$¸öµ¥Î»³¤¶Èʱ£¬ED¡äÇ¡ºÃ½«¡÷O¡äD¡äB¡äµÄÃæ»ý·ÖΪ1£º2Á½²¿·Ö£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊǶþ´Îº¯Êýº¯ÊýµÄ×ÛºÏÓ¦Ó㬽â´ð±¾ÌâÖ÷ÒªÓ¦ÓÃÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ¡¢¶þ´Îº¯ÊýµÄÐÔÖÊ¡¢Æ½ÒÆÓë×ø±ê±ä»»£¬ÒÀ¾ÝËıßÐÎDCPBµÄÃæ»ý=¡÷ODBµÄÃæ»ý+¡÷OBPµÄÃæ»ý+¡÷OCPµÄÃæ»ýÁгöSÓëtµÄº¯Êý¹ØÏµÊ½Êǽâ´ðÎÊÌ⣨2£©µÄ¹Ø¼ü£¬Óú¬aµÄʽ×Ó±íʾ³öµãEµÄ×ø±êÊǽâ´ðÎÊÌ⣨3£©µÄ¹Ø¼ü£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | x1£¼x2£¼x3 | B£® | x1£¼x3£¼x2 | C£® | x2£¼x1£¼x3 | D£® | x3£¼x2£¼x1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com