精英家教网 > 初中数学 > 题目详情

作业宝如图,⊙O1与⊙O2交于A,B,⊙O1的弦CA切⊙O2于A,CB的延长线交⊙O2于D,DA的延长线交⊙O1于E.
求证:AC=CE.

证明:连接AB;
∵AC是⊙O2的切线,切点为A,
∴∠FAD=∠ABD;
又∠FAD=∠CAE,
∴∠ABD=∠CAE;
而∠ABD是⊙O1的内接四边形ABCE的一个外角,
∴∠ABD=∠E,
∴∠EAC=∠E;
∴AC=EC.
分析:连接AB;根据圆内接四边形的性质得到∠ABD=∠E;由弦切角定理证得∠FAD=∠ABD=∠E,由于∠FAD=∠CAE,可证得∠CAE=∠E,从而得到AC=EC.
点评:此题主要考查了切线的性质,连接公共弦是相交两圆中常见的一条辅助线;熟练运用圆内接四边形的性质和弦切角定理,进行角之间的转换是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、已知:如图,⊙O1与⊙O2外切于点P,直线AB过点P交⊙O1于A,交⊙O2于B,点C、D分别为⊙O1、⊙O2上的点,且∠ACP=65°,则∠BDP=
65
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O1与⊙O2外切于M点,AF是两圆的外公切线,A、B是切点,DF经过O1、O2,分别交⊙O1于D、⊙O2于E,AC是⊙O1的直径,BC经过M点,连接AD.
(1)求证:AD∥BC;
(2)求证:MF2=AF•BF;
(3)如果⊙O1的直径长为8,tan∠ACB=
34
,求⊙O2的直径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O1与⊙O2相交于C、D两点,⊙O1的割线PAB与DC的延长线交于点P,PN与⊙O2相切于点N,若PB=10,AB=6,则PN=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O1与⊙O2外切于A点,直线l与⊙O1、⊙O2分别切于B,C点,若⊙O1的半径r1=2cm,⊙O2的半径r2=3cm.求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图:⊙O1与⊙O2相交于AB两点,过点A、B的直线分别与⊙O1交于C、E,与⊙O2交于D、F,连接CE、DF.
求证:CE∥DF.

查看答案和解析>>

同步练习册答案