精英家教网 > 初中数学 > 题目详情

已知数学公式,比较:a________b(填“>、<或=”).

=
分析:先对a进行分母有理化,然后与b比较即可.
解答:∵a==2-,b=2-
∴a=b.
点评:解答此题应当找到2+的有理化因式,再进行分母有理化.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

(2013•燕山区一模)阅读下列材料:
问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且∠EAF=45°. 判断线段BE、EF、FD之间的数量关系,并说明理由.

小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△DAF绕点A顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.
请你参考小明同学的思路,解决下列问题:
(1)图(1)中线段BE、EF、FD之间的数量关系是
EF=BE+DF
EF=BE+DF

(2)如图(2),已知正方形ABCD边长为5,E、F分别是BC、CD边上的点,且∠EAF=45°,AG⊥EF于点G,则AG的长为
5
5
,△EFC的周长为
10
10

(3)如图(3),已知△AEF中,∠EAF=45°,AG⊥EF于点G,且EG=2,GF=3,则△AEF的面积为
15
15

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•石家庄二模)阅读下列材料:
问题:如图1,在正方形ABCD内有一点P,PA=
5
,PB=
2
,PC=1,求∠BPC的度数.
小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连接PP′.
请你参考小明同学的思路,解决下列问题:
(1)图2中∠BPC的度数为
135°
135°

(2)如图3,若在正六边形ABCDEF内有一点P,且PA=2
13
,PB=4,PC=2,则∠BPC的度数为
120°
120°
,正六边形ABCDEF的边长为
2
7
2
7

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在正方形ABCD内有一点P,PA=
5
,PB=
2
,PC=1,求∠BPC的度数.
【分析问题】根据已知条件比较分散的特点,我们可以通过旋转变换将分散的已知条件集中在一起,于是将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.
【解决问题】请你通过计算求出图2中∠BPC的度数;
【比类问题】如图3,若在正六边形ABCDEF内有一点P,且PA=2
13
,PB=4,PC=2.
(1)∠BPC的度数为
120°
120°
; 
(2)直接写出正六边形ABCDEF的边长为
2
7
2
7

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:比较的大小,并用“<”号连接起来。(7分)

 

查看答案和解析>>

科目:初中数学 来源:2013届安徽滁州八年级下期末模拟数学试卷(沪科版)(解析版) 题型:解答题

先阅读,后解答:

像上述解题过程中,相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,

(1) 的有理化因式是             的有理化因式是             

(2)将下列式子进行分母有理化:

(1)=                 ;         (2)=              

(3)已知,比较的大小关系。

 

查看答案和解析>>

同步练习册答案