精英家教网 > 初中数学 > 题目详情
(2006•钦州)(1)计算:
(2)解方程组:
(3)用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:

根据规律填空:
①第4个图案中有白色地面砖______块;
②第n个图案中有白色地面砖______块.
【答案】分析:(1)利用任何数的0次幂是1,进行有理数的运算即可;
(2)用加减法,先把y的系数转化成相同的或相反的数,然后两式相加减消元,从而求出x的值,然后把x的值代入一方程求y的值.
(3)主要是找规律,从图中白砖与黑砖的块数找规律.我们可以发现,黑砖的数量是1,2,3,4,…,白砖的数量是6,10,14…,所以从第二块砖起,我们可以看出黑砖与白砖的数量关系是白=6n-2(n-1),其中n是黑砖的数量.
解答:解:(1)原式=1+5=6;(4分)

(2)把y=x+1代入x+y=5,得2x+1=5(5分)
∴x=2(6分)
∴y=2+1=3(7分)
∴原方程组的解为;(8分)

(3)①从图中白砖与黑砖的块数找规律.我们可以发现,黑砖的数量是1,2,3,4,…,白砖的数量是6,10,14…,所以从第二块砖起,我们可以看出黑砖与白砖的数量关系是白=6n-2(n-1),其中n是黑砖的数量.所以第4个图案中有白色地面砖=18;(10分)
②第n个图案中有白色地面砖4n+2.(12分)
点评:(1)题考查了实数的运算.(2)考查了解二元一次方程的能力.(3)题主要考查学生找规律的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2006•钦州)附加题:
如图,已知∠1=65°15′,∠2=78°30′,那么∠1+∠2=
143
143
45
45
分,∠3=
36
36
15
15
分.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2006•钦州)如图,在平面直角坐标系中,矩形OABC的顶点O为原点,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在OA边上的点D处,点A,D的坐标分别为(5,0)和(3,0).
(1)求点C的坐标;
(2)求DE所在直线的解析式;
(3)设过点C的抛物线y=2x2+bx+c(b<0)与直线BC的另一个交点为M,问在该抛物线上是否存在点G,使得△CMG为等边三角形?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省宁波市余姚市梨洲中学质量分析数学试卷(解析版) 题型:解答题

(2006•钦州)如图,在平面直角坐标系中,矩形OABC的顶点O为原点,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在OA边上的点D处,点A,D的坐标分别为(5,0)和(3,0).
(1)求点C的坐标;
(2)求DE所在直线的解析式;
(3)设过点C的抛物线y=2x2+bx+c(b<0)与直线BC的另一个交点为M,问在该抛物线上是否存在点G,使得△CMG为等边三角形?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年广西钦州市中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•钦州)如图,在平面直角坐标系中,矩形OABC的顶点O为原点,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在OA边上的点D处,点A,D的坐标分别为(5,0)和(3,0).
(1)求点C的坐标;
(2)求DE所在直线的解析式;
(3)设过点C的抛物线y=2x2+bx+c(b<0)与直线BC的另一个交点为M,问在该抛物线上是否存在点G,使得△CMG为等边三角形?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年广西钦州市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•钦州)如图,在平面直角坐标系中,矩形OABC的顶点O为原点,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在OA边上的点D处,点A,D的坐标分别为(5,0)和(3,0).
(1)求点C的坐标;
(2)求DE所在直线的解析式;
(3)设过点C的抛物线y=2x2+bx+c(b<0)与直线BC的另一个交点为M,问在该抛物线上是否存在点G,使得△CMG为等边三角形?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案