科目:初中数学 来源: 题型:
| 3 |
| 3 |
| AC |
| AC |
| 2 |
| 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2012-2013学年浙江省湖州八中七年级第二学期期中考试数学试卷(带解析) 题型:解答题
(1)观察发现
如题(a)图,若点A,B在直线
同侧,在直线
上找一点P,使AP+BP的值最小.
做法如下:作点B关于直线
的对称点
,连接
,与直线
的交点就是所求的点P
再如题(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为 .
(2)实践运用
如题(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是弧AD的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.![]()
(3)拓展延伸
如题(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.
查看答案和解析>>
科目:初中数学 来源:2015届浙江省七年级第二学期期中考试数学试卷(解析版) 题型:解答题
(1)观察发现
如题(a)图,若点A,B在直线
同侧,在直线
上找一点P,使AP+BP的值最小.
做法如下:作点B关于直线
的对称点
,连接
,与直线
的交点就是所求的点P
再如题(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为 .
(2)实践运用
如题(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是弧AD的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.
![]()
(3)拓展延伸
如题(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.
查看答案和解析>>
科目:初中数学 来源:2011-2012年江苏GSJY八年级第二次学情调研考试数学卷 题型:解答题
(本小题满分12分)
1. (1)观察发现
如(a)图,若点A,B在直线
同侧,在直线
上找一点P,使AP+BP的值最小.
做法如下:作点B关于直线
的对称点
,连接
,与直线
的交点就是所求的点P
再如(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为 . (2分)
![]()
2.(2)实践运用
如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,求PM+PN的最小值。(5分)
![]()
3.(3)拓展延伸
如(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法. (5分)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com