精英家教网 > 初中数学 > 题目详情

已知△ABC中,AB=4,AC=3,把△ABC绕点A旋转某个角度后,使得点B落在点B1处,点C落在点C1处,这时,若BB1=2,则CC1的长度为________.


分析:根据旋转的性质可以得到△BB′A和△CC′A是顶角相等的两个等腰三角形,因而△BB′A∽△CC′A,根据相似三角形的对应边的比相等,即可求得.
解答:∵△BB′A∽△CC′A
==
∴CC′=BB′=
点评:本题主要是运用旋转的性质,利用相似三角形的性质求解,得到△BB′A∽△CC′A是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程证明△ABD≌△ACD的理由.
∵AD平分∠BAC,
∴∠BAD=∠
 
(角平分线的定义).
在△ABD和△ACD中,
(               )
(               )
(               )

∴△ABD≌△ACD
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知△ABC中,AB=AC,AD为BC边上的中线,BE为AC边上的高,
(1)在图中作出中线AD(要求用尺规作图,保留作图痕迹,不写作法与证明);
(2)设AD,BE交于点F,若∠ABC=70°,求∠DFB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=20,AC=15,BC边上的高为12,则△ABC的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.
∵AD平分∠BAC
∴∠
BAD
BAD
=∠
CAD
CAD
(角平分线的定义)
在△ABD和△ACD中

∴△ABD≌△ACD
SAS
SAS

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知△ABC中,AB=17cm,BC=30cm,BC边上的中线AD=8cm.求证:△ABC是等腰三角形.

查看答案和解析>>

同步练习册答案