精英家教网 > 初中数学 > 题目详情

如图1,AB为⊙O的直径,点C是⊙O上一点,∠BAC=30°,点D是AC边上一点,BC=DC,以DC为一边作等边三角形DCE.
(1)求证:BD=OE;
(2)将△DCE绕点C顺时针旋转α(0°<α<60°)得到△D1CE1(如图2),判断BD1与OE1是否相等,并说明理由.

(1)证明:∵AB是直径,
∴∠ACB=90°,
∵OA=OB,∠A=30°,
∴OC=AB,BC=AB,
∴OC=BC,
∵∠A=30°,OA=OC,
∴∠A=∠OCA=30°,
∴∠OCB=90°-30°=60°,
∵△DCE是等边三角形,
∴CD=CE,∠DCE=60°=∠OCB,
∴∠OCB+∠OCD=∠DCE+∠OCD,
即∠BCD=∠OCE=90°,
在△BCD和△OCE中

∴△BCD≌△OCE,
∴BD=CE.

(2)解:BD1与OE1相等,
理由是:∵△D1CE是等边三角形,
∴CD1=CE1,∠D1CE1=60°=∠OCB,
∴∠OCB+∠OCD1=∠D1CE1+∠OCD1
即∠BCD1=∠OCE1
在△BCD1和△OCE1

∴△BCD1≌△OCE1
∴BD1=OE1
分析:(1)求出BC=OC,CD=CE,∠BCD=∠OCE,证出△BCD≌△OCE即可;
(2)求出BC=OC,CD1=CE1,∠BCD1=∠OCE1,证出△BCD1≌△OCE1即可.
点评:本题考查了圆周角定理,等腰三角形性质,直径三角形斜边上中线性质,全等三角形性质和判定,等边三角形性质的应用,关键是能推出△BCD≌△OCE,△BCD1≌△OCE1
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•新余模拟)如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是
18π
18π

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖北)如图,以AB为直径的半圆O交AC于点D,且点D为AC的中点,DE⊥BC于点E,AE交半圆O于点F,BF的延长线交DE于点G.
(1)求证:DE为半圆O的切线;
(2)若GE=1,BF=
32
,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1在△ABC中,D为AB上一点,DE∥BC交AC于点E,若AD:DB=2:3,BC=10,求DE的长.
(2)如图2,AB为⊙O的直径,弦CD⊥AB,垂足为点M,连接AC.若∠B=30°,AB=2,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•宝安区二模)已知:如图1,AB为⊙O的直径,M是
BC
的中点,AM交BC于D,MD=1,DA=2.
(1)求证:△MBD∽△MAB;
(2)求∠A的度数;
(3)延长AB到E,使BE=BO,连接ME、MC,如图2,试证明四边形MCBE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以AB为直径的⊙O与AD、DC、BC均相切,若AB=BC=4,则OD的长度为(  )

查看答案和解析>>

同步练习册答案