分析 (1)过P点作PE∥AB,则∠A=∠APE,再由AB∥CD得出PE∥CD,故∠EPC=∠C,利用等量代换即可得出结论;
(2)先由平行线的性质得出∠C=∠PGM,再由三角形外角的性质即可得出结论;
(3)根据AB∥CD得出∠A=∠AGC,再由三角形外角的性质即可得出结论.
解答
解:(1)如图①,过P点作,PE∥AB,则:∠A=∠APE,
∵AB∥CD,
∴PE∥CD
∴∠EPC=∠C.
又∵∠APC=∠APE+∠EPC,
∴∠APC=∠A+∠C;![]()
(2)如图②,
∵AB∥CD,
∴∠C=∠PGM.
∵∠PGM=∠A+∠APC,
∴∠C=∠A+∠APC;![]()
(3)如图③,
∵AB∥CD,
∴∠A=∠AGC.
∵∠AGC=∠C+∠APC,
∴∠A=∠C+∠APC.
点评 本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com