精英家教网 > 初中数学 > 题目详情

如图,已知△ABC内接于半径为r的半圆内,直径AB为其一边,设AC+BC=S,则有


  1. A.
    S2≤8r2
  2. B.
    S2≥8r2
  3. C.
    S2≤6r2
  4. D.
    S2≥6r2
C
分析:过C作CD⊥AB于D,在Rt△ACB中,得出AC2+BC2=AB2=(2r)2=4r2,AC×BC=2r×CD≤2R2,把AC+BC=S两边平方即可得出答案.
解答:
过C作CD⊥AB于D,
则CD≤r,
∵AB是直径,
∴∠ACB=90°,
∴AC2+BC2=AB2=(2r)2=4r2
S△ACB=×AC×BC=×AB×CD,
AC×BC=2r×CD≤2R2
∵AC+BC=S,
∴S2=(AC+BC)2=AC2+BC2+2AC×BC
=4r2+2AB×CD≤4r2+2r2
即S2≤6r2
故选C.
点评:本题考查了圆周角定理,勾股定理,三角形的面积等知识点的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC内接于⊙O,AD平分∠BAC,交⊙O于点D,过D作⊙O的切线与AC的延长线交于点E.
(1)求证:BC∥DE;
(2)若AB=3,BD=2,求CE的长;
(3)在题设条件下,为使BDEC是平行四边形,△ABC应满足怎样的条件(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•樊城区模拟)如图,已知△ABC内接于⊙O,弦AD交BC于E,过点D的切线MN交直线AB于M,交直线AC于N.
(1)求证:AE•DE=BE•CE;
(2)连接DB,CD,若MN∥BC,试探究BD与CD的数量关系;
(3)在(2)的条件下,已知AB=6,AN=15,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC内接于⊙O,AE平分∠BAC,且AD⊥BC于点D,连接OA.
求证:∠OAE=∠EAD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC内接于⊙O,AB=AC,∠A=36°,CD是⊙O的直径,求∠ACD的度数.

查看答案和解析>>

同步练习册答案