精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连接OA.
(1)求△OAB的面积;
(2)若抛物线y=-x2-2x+c经过点A.
①求c的值;
②将该抛物线向下平移m个单位,使顶点落在线段AO上,请直接写出相应的m值.

解:(1)如图:
∵点A的坐标是(-2,4),AB⊥y轴,
∴AB=2,OB=4,
∴△OAB的面积=×AB×OB=×2×4=4;

(2)①把点A的坐标(-2,4)代入y=-x2-2x+c中,
-(-2)2-2×(-2)+c=4,
∴c=4,
②作二次函数y=-x2-2x+4的对称轴,分别交AO于F,交二次函数于D,
根据二次函数顶点的公式,易求D(-1,5),
直线AO的解析式是y=-2x,
且对称轴x=-1与y=-2x,交于点F(-1,2),
∴m=5-2=3.
分析:(1)由A点坐标可得AB=2,OB=4,再利用三角形面积易求△OAB的面积;
(2)①把(-2,4)的值代入函数解析式,即可求c;
②先求出AO的解析式,再求出二次函数顶点的坐标,再求出二次函数对称轴与直线AO的交点,那么进而可求m.
点评:本题考查了三角形的面积计算、点与解析式的关系、二次函数的性质,解题的关键是数形结合.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案