精英家教网 > 初中数学 > 题目详情
精英家教网如图,直线y=-
43
x+8
与x轴、y轴分别交于A和B,M是OB上的一点,△ABM沿AM折叠,点B恰好落在x轴上的C处.
(1)求C点的坐标;
(2)求直线AM的解析式.
分析:(1)由△ABM沿AM折叠,点B恰好落在x轴上的C处得到AB=AC,而AB的长度根据已知可以求出,所以C点的坐标由此求出;
(2)由于折叠得到CM=BM,在直角△CMO中根据勾股定理可以求出OM,也就求出M的坐标,而A的坐标已知,由此即可求出直线AM的解析式.
解答:解:(1)∵直线y=-
4
3
x+8
与x轴、y轴分别交于A和B,
∴A(6,0)、B(0,8),
∴OA=6,OB=8,
∴AB=10,
而△ABM沿AM折叠,点B恰好落在x轴上的C处
∴AB=AC=10,
∴C(-4,0);

(2)设M(0,b),
则CM=BM=8-b,
∵CM2=CO2+OM2
∴b=3,
∴M(0,3),而A(6,0),
设直线AM的解析式为y=kx+b(k≠0),
b=3
6k+b=0

解得
b=3
k=-
1
2

∴直线AM的解析式为:y=-
1
2
x+3.
点评:本题综合考查了一次函数图象和性质与几何知识的应用,题中利用折叠知识与直线的关系以及直角三角形等知识求出线段的长是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、如图,直线l1∥l2,AB⊥l1,垂足为O,BC与l2相交于点E,若∠1=43°,则∠2=
133
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=kx+4与x、y轴分别交于A、B两点,且tan∠BAO=
43
,过点A的抛物线交y轴与点C,且OA=OC,并以直线x=2为对称轴,点P是抛物线上的一个动点.
(1)求直线AB与抛物线的解析式;
(2)是否存在以点P为圆心的圆与直线AB及x轴都相切?若存在,求出点P的坐标,若不存在,试说明理由.
(3)连接OP并延长到Q点,使得PQ=OP,过点Q分别作QE⊥x轴于E,QF⊥y轴于F,设点P的横坐标为x,矩形OEQF的周长为y,求y与x的函数关系.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,直线AB∥CD,EF⊥AB,垂足为O,FG与CD相交于H,若∠1=43°,则∠2=
133
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线AB与⊙O相切于点C,弦EF∥AB交OC于H,D是⊙O上一点,连接DE、DC、OF.
(1)若∠EDC=30°,则∠COF=
 
度;
(2)若EF=4
3
,CH=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知如图,直线y=-
3
x+4
3
与x轴相交于点A,与直线y=
3
3
x相交于点P.
(1)求点P的坐标;
(2)求S△OPA的值;
(3)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.

查看答案和解析>>

同步练习册答案