精英家教网 > 初中数学 > 题目详情

如图,在正方形ABCD中,E为BC上一点,且BE=2CE;F为AB上一动点,BF=nAF,连接DF,AE交于点P.
(1)若n=1,则数学公式=______,数学公式=______;
(2)若n=2,求证:8AP=3PE;
(3)当n=______时,AE⊥DF(直接填出结果,不要求证明).

解:(1)延长AE交DC的延长线于H,
∵四边形ABCD为正方形,
∴AB∥DH,
∴∠H=∠BAH,∠B=∠BCH,
∴△BEA∽△CEH,

设EC=m,则AB=BC=CD=3m,BE=2m,CH=1.5m,
同理:△AFP∽△DPH,
∴FP:PD=AP:PH=AF:DH=1.5m:4.5m=1:3,
设AP=n,PH=3n,AH=4n,AE:EH=2:1,EH=n,
∴PE=n,
∴AP:PE=3:5,
==

(2)证明:如图,延长AE交DC的延长线于H,
∵四边形ABCD为正方形,
∴AB∥DH,
∴∠H=∠BAH,∠B=∠BCH,
∴△BEA∽△CEH,

设EC=2a,BE=4a,则AB=BC=CD=6a,CH=3a,AF=2a,
同理:△AFP∽△HDP,
设AP=2k,PH=9k,
∴AH=11k,
∴EH=
∴PE=
=
∴8AP=3PE;

(3)当AE⊥DF时,tan∠BAE=PF:AP=BE:AB=2:3,
∵△AFP∽△AFD,
∴FP:AP=AF:AD=2:3,
∴AF=AD=AB,BF=AB,
∴BF=AF,
∴n=
分析:(1)可通过构建相似三角形,根据相似三角形的对应边成比例来求解.
(2)同(1)解法.
(3)根据已知及相似三角形的性质进行求解.
点评:本题主要考查了正方形的性质,相似三角形的判定和性质等知识点,通过构建相似三角形得出相关线段间的比例关系是求解的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案