| (1)证明:∵△ABC是等腰直角三角形, ∴∠B=∠C=45°,AB=AC, ∵AP=AQ, ∴BP=CQ, ∵E是BC的中点, ∴BE=CE,在△BPE和△CQE中, ∵ ∴△BPE≌△CQE(SAS); (2)解:∵△ABC和△DEF是两个全等的等腰直角三角形, ∴∠B=∠C=∠DEF=45°, ∵∠BEQ=∠EQC+∠C, 即∠BEP+∠DEF=∠EQC+∠C, ∴∠BEP+45°=∠EQC+45°, ∴∠BEP=∠EQC, ∴△BPE∽△CEQ, ∴ ∵BP=a,CQ= ∴BE=CE= ∴BC=3 ∴AB=AC=BC ∴AQ=CQ﹣AC= 连接PQ, 在Rt△APQ中,PQ= |
科目:初中数学 来源: 题型:
| BG | CG |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| BC | CD |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| 2 |
| 10 |
| 10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com