精英家教网 > 初中数学 > 题目详情

已知:如图,△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD.

证明:方法1:在AB上取AE=AC,连接DE,
∵AE=AC,∠1=∠2,且AD=AD,
∴△ACD≌△AED(SAS),
∴ED=CD,∠AED=∠C=2∠B,
又∵∠AED=∠B+∠BDE,
∴∠B=∠BDE,
∴EB=ED,即△BED为等腰三角形.
∴BE=ED=CD,
∴AB=AE+EB=AC+CD.

方法2:延长AC到E,使CE=CD,连接DE.
则∠CDE=∠E
∴∠ACB=∠CDE+∠E=2∠E
∵∠ACB=2∠B
∴∠B=∠E
∵∠1=∠2,AD=AD
∴△ABD≌△AED
∴AB=AE=AC+CD.
分析:在AB上取AE=AC.连接DE,可得△ACD≌△AED,得出ED=CD,进而通过线段之间的转化即可得出结论.
点评:本题主要考查了全等三角形的判定及性质以及等腰三角形的性质等问题,能够利用全等三角形的性质求证一些简单的问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案