精英家教网 > 初中数学 > 题目详情

作业宝如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上的中点,过点D作DE⊥DF,交AB于点E,交BC于点F.若AE=4,FC=3,则EF的长为


  1. A.
    3
  2. B.
    4
  3. C.
    5
  4. D.
    7
C
分析:根据等腰直角三角形性质得出AD=BD=CD,∠C=∠A=∠EBD=∠FBD=45°,BD⊥AC,求出∠EDB=∠CDF,证△EDB≌△FDC和△ADE≌△BDF,求出BE=CF=3,BF=AE=4,根据勾股定理求出即可.
解答:
连接BD,
∵等腰三角形ABC中,∠ABC=90°,D为AC边上的中点,
∴AD=BD=CD,∠C=∠A=∠EBD=∠FBD=45°,BD⊥AC,
∵DE⊥DF,
∴∠EDF=∠BDC=90°,
∴∠EDB=∠CDF=90°-∠BDF,
在△EDB和△FDC中,

∴△EDB≌△FDC(ASA),
∴CF=BE=3,
同理AE=BF=4,
在Rt△EBF中,由勾股定理得:EF==5,
故选C.
点评:本题考查了勾股定理,直角三角形斜边上中线性质,全等三角形的性质和判定,等腰三角形性质的应用,主要考查学生综合运用性质进行推理的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、已知:如图,在等腰三角形ABC中,∠A=90°,∠ABC的平分线BD与AC交于点D,DE⊥BC于点E.求证:AD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长春)感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)
拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.
应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为
6
6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰三角形ABC中,AB=AC=12,BC=8,又BD=3,CE=2.
求证:△ABD∽△BCE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,在等腰三角形ABC中,AB=AC,AD是BC边上的中线,∠ABC的平分线BG,交AD于点E,EF⊥AB,垂足为F.
①若∠BAD=20°,则∠C=
70°
70°

②求证:EF=ED.
(2)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.
①求∠ECD的度数;
②若CE=5,求BC长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰三角形ABC中,AB=AC,∠A=40°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE等于(  )

查看答案和解析>>

同步练习册答案