精英家教网 > 初中数学 > 题目详情

已知:如图,△ABC中,D、E为AC边的三等分点,EF∥AB,交BD的延长线于F.
求证:点D是BF的中点.

证明:∵D、E为AC边的三等分点,
∴AD=DE.
∵EF∥AB,
∴∠BAD=∠FED.
在△BAD和△FED中
∠ADB=∠FDE,AD=DE,∠BAD=∠FED,
∴△BAD≌△FED(ASA).
∴BD=FD.
∴点D是BF的中点.
分析:因为D、E为AC边的三等分点,所以AD=DE=EC,又因为EF∥AB,由内错角相等可得∠BAD=∠FED,所以可根据ASA证明△BAD≌△FED,则有BD=FD,故点D是BF的中点可证.
点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案