精英家教网 > 初中数学 > 题目详情

如图所示,所对的圆心角都是∠O,AC=4厘米,的长为3π厘米,阴影部分的面积为14π平方厘米.

求AB的长.

答案:
解析:

  答:的长为4π厘米.

  解:设OC=x厘米,则OA=(x+4)厘米.

  根据弧长和扇形面积公式可得

  

  解这个方程组,得n=45,x=12.

  ∴OA=x+4=16(厘米)

  ∴=4π(厘米)

  解析:本题解决的关键是先根据条件求出圆心角和半径OC.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.
(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的
14
,求P、Q两块绿地周围的硬化路面的宽.
(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、定义:弦切角:顶点在圆上,一边与圆相交,另一边和圆相切的角叫弦切角.
问题情景:已知如图所示,直线AB是⊙O的切线,切点为C,CD为⊙O的一条弦,∠P为弧CD所对的圆周角.
(1)猜想:弦切角∠DCB与∠P之间的关系.试用转化的的思想:即连接CO并延长交⊙O于点E,连接DE,来论证你的猜想.
(2)用自己的语言叙述你猜想得到的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

在一节数学实践活动课上,吕老师手拿着三个正方形硬纸板和几个不同的圆形的盘子,他向同学们提出了这样一个问题:已知手中圆盘的直径为13cm,手中的三个正方形硬纸板的边长均为5cm,若将三个正方形纸板不重叠地放在桌面上,能否用这个圆盘将其盖住?问题提出后,同学们七嘴八舌,经过讨论,大家得出了一致性的结论是:本题实际上是求在不同情况下将三个正方形硬纸板无重叠地适当放置,圆盘能盖住时的最小直径.然后将各种情形下的直径值与13cm进行比较,若小于或等于13cm就能盖住,反之,则不能盖住.吕老师把同学们探索性画出的四类图形画在黑板上,如下图所示.
精英家教网
(1)通过计算,在①中圆盘刚好能盖住正方形纸板的最小直径应为
 
cm.(填准确数)
(2)图②能盖住三个正方形硬纸板所需的圆盘最小直径为
 
cm图③能盖住三个正方形硬纸板所需的圆盘最小直径为
 
cm?(结果填准确数)
(3)按④中的放置,考虑到图形的轴对称性,当圆心O落在GH边上时,此时圆盘的直径最小.请你写出该种情况下求圆盘最小直径的过程.(计算中可能用到的数据,为了计算方便,本问在计算过程中,根据实际情况最后的结果可对个别数据取整数)
(4)由(1)(2)(3)的计算可知:A.该圆盘能盖住三个正方形硬纸板,B.该圆盘不能盖住三个正方形硬纸板.你的结论是
 
.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•邗江区一模)一张圆形纸片,小芳进行了如下连续操作:

(1)将圆形纸片左右对折,折痕为AB,如图(2)所示.
(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示.
(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示.
(4)连结AE、AF,如图(5)所示.
经过以上操作小芳得到了以下结论:
①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S△AEFS=3
3
:4π

以上结论正确的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

【考点】切线的性质;圆周角定理.

【专题】计算题.

【分析】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示,由PA与PB都为圆O的切线,利用切线的性质得到OA与AP垂直,OB与BP垂直,在四边形APOB中,根据四边形的内角和求出∠AOB的度数,再利用同弧所对的圆周角等于所对圆心角的一半求出∠ADB的度数,再根据圆内接四边形的对角互补即可求出∠ACB的度数.

【解答】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),

连接BD,AD,如图所示:

∵PA、PB是⊙O的切线,

∴OA⊥AP,OB⊥BP,

∴∠OAP=∠OBP=90°,又∠P=40°,

∴∠AOB=360°-(∠OAP+∠OBP+∠P)=140°,

∵圆周角∠ADB与圆心角∠AOB都对弧AB,

∴∠ADB=∠AOB=70°,

又∵四边形ACBD为圆内接四边形,

∴∠ADB+∠ACB=180°,

则∠ACB=110°.

故选B。

【点评】此题考查了切线的性质,圆周角定理,圆内接四边形的性质,以及四边形的内角和,熟练掌握切线的性质是解本题的关键

查看答案和解析>>

同步练习册答案