精英家教网 > 初中数学 > 题目详情

(1)计算:数学公式
(2)解方程:x2+4x-2=0.

解:(1)原式=+1+-=
(2)方程移项得:x2+4x=2,
配方得:x2+4x+4=6,即(x+2)2=6,
开方得:x+2=±
解得:x1=-2+,x2=-2-
分析:(1)原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用负数的绝对值等于它的相反数化简,即可得到结果;
(2)常数项移到右边,两边都加上4,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.
点评:此题考查了解一元二次方程-配方法,以及实数的运算,利用配方法解方程时,首先将方程常数项移到右边,二次项系数化为1,然后方程两边加上一次项系数一半的平方,左边化为完全平方式,右边化为非负常数,开方转化为两个一元一次方程来求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

计算:
(1)解方程:
x
x-4
-
32
x2-16
=1;
(2)解不等式组
2(2-x)≤4
x-1
2
<1
,并将解集表示在数轴上.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)解方程:x2+2x-63=0.               
(2)计算:
3tan30°
3cos230°-2sin30°

(3)计算:(10
48
-6
27
+4
12
6

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)解方程:(2x-3)2-6(2x-3)+5=0.
(2)已知a、b、c均为实数且
a2-2a+1
+|b+1|+(c+3)2=0
,求方程ax2+bx+c=0的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算、化简、解方程
(1)(-
2
9
-
1
4
+
1
18
)÷(-
1
36
)        
(2)-11+[1-(1-0.5×
1
3
)]×[2-(-3)2|
(3)5ab2-[a2b+2(a2b-3ab2)]
(4)6x-7=4x-5                          
(5)2y-
1
2
=
1
2
y-3.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)解不等式组:
x
2
>-1
2x+1≥5(x-1)
,并把解集在数轴上表示出来.
(2)解分式方程:
3
x-2
+
x
2-x
=-2

查看答案和解析>>

同步练习册答案