精英家教网 > 初中数学 > 题目详情
如图,则△ABC的形状是
[     ]
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等腰三角形
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)如图1,△ABC各边长都大于2,分别以A、B、C为圆心,以1单位长为半径画圆,则阴影部分面积为
 

(2)如图2,将(1)中的△ABC换成四边形ABCD,其它条件不变,则阴影部分面积为
 

(3)如图3,将四边形换成五边形,那么其阴影部分面积为
 

(4)根据结论(1),(2),(3),你能总结n边形的情况吗?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

探究与发现:
如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=
 
°;
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;
③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•高淳县一模)如图①,若点P是△ABC内或边上一点,且∠BPC=2∠A,则称点P是△ABC内∠A的二倍角点.
(1)如图②,点O等边△ABC的外心,连接OB、OC.
①求证:点O是△ABC内∠A的一个二倍角点;
②作△BOC的外接圆,求证:弧BOC上任意一点(B、C除外)都是△ABC内∠A的二倍角点.
(2)如图③,在△ABC的边AB上求作一点M,使点M是△ABC内∠A的一个二倍角点(要求用尺规作图,保留作图痕迹,并写出作法).
(3)在任意三角形形内,是否存在一点P同时为该三角形内三个内角的二倍角点?请直接写出结论,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

情境创设:
如图1,两块全等的直角三角板,△ABC≌△DEF,且∠C=∠F=90°,现如图放置,则∠ABE=
90
90
°.
问题探究:
如图2,△ABC中,AH⊥BC于H,以A为直角顶点,分别以AB、AC为直角边,向△ABC形外作等腰直角△ABE和等腰直角△ACF,过点E、F作射线HA的垂线,垂足分别为M、N,试探究线段EM和FN之间的数量关系,并说明理由.
拓展延伸:
如图3,△ABC中,AH⊥BC于H,以A为直角顶点,分别以AB、AC为一边,向△ABC形外作正方形ABME和正方形ACNF,连接E、F交射线HA于G点,试探究线段EG和FG之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年江苏省南京市高淳县中考数学一模试卷(解析版) 题型:解答题

如图①,若点P是△ABC内或边上一点,且∠BPC=2∠A,则称点P是△ABC内∠A的二倍角点.
(1)如图②,点O等边△ABC的外心,连接OB、OC.
①求证:点O是△ABC内∠A的一个二倍角点;
②作△BOC的外接圆,求证:弧BOC上任意一点(B、C除外)都是△ABC内∠A的二倍角点.
(2)如图③,在△ABC的边AB上求作一点M,使点M是△ABC内∠A的一个二倍角点(要求用尺规作图,保留作图痕迹,并写出作法).
(3)在任意三角形形内,是否存在一点P同时为该三角形内三个内角的二倍角点?请直接写出结论,不必说明理由.

查看答案和解析>>

同步练习册答案