如图,在四边形纸片ABCD中,已知:AD∥BC,AB∥CD,∠B=90°,现将四边形纸片ABCD对折,折痕为PF(点P在BC上,点F在DC上),使顶点C落在四边形ABCD内一点C′,PC′的延长线交AD于M,再将纸片的另一部分对折(折痕为ME),使顶点A落在直线PM上一点A′.

(1)填空:
因为AD∥BC,(已知)
所以∠B+∠A=180°
两直线平行,同旁内角互补
两直线平行,同旁内角互补
又因为∠B=90°(已知)
所以∠A=
90
90
度.
则:∠EA′M=
90
90
度.
又因为AB∥CD(已知)
同理:∠FC′P=∠C=
90
90
度.
所以∠EA′M
=
=
∠FC′P(填“<”或“=”或“>”)
所以
EA′
EA′
∥
FC′
FC′
理由:
内错角相等,两直线平行
内错角相等,两直线平行
.
(2)ME与PF平行吗?请说明理由.