精英家教网 > 初中数学 > 题目详情

如图,矩形ABCD中,AB=4,AD=8,P是对角线AC上一动点,连接PD,过点P作PE⊥PD交线段BC于E,设AP=x.
(1)求PD:PE的值;
(2)设DE2=y,试求出y与x的函数关系式,并求x取何值时,y有最小值;
(3)当△PCD为等腰三角形时,求AP的长.

解:(1)过P作MN⊥BC交BC、AD于N、M,则MN∥CD.



∵∠MPD+∠MDP=∠MPD+∠NPE=90°,
∴∠MDP=∠NPE.
又∵∠DMP=∠PNE=90°,
∴△DMP∽△PNE.

∴PD:PE=2:1;

(2)∵PM=x,

∵CN=

∵DE2=CD2+CE2

当DP⊥AC时y有最小值,可求AP=,即当x=时,y有最小值.

(3)当PD=PC时,则AP=
当CP=CD时,则AP=
当DP=DC时,则AP=
分析:(1)此题要通过构建相似三角形求解,过P作MN⊥BC于N,交AD于M,若AP=x,通过△APM∽△ACD即可得到PM、DM的表达式,同理可求得PN、CN表达式,由于PD⊥PE,可证得△PDM∽△EPN,根据相似三角形的对应边的比相等,即可得到PD:PE的值.
(2)由于△DPE是直角三角形,即可由勾股定理求得DE2的表达式,也就得到了关于y、x的函数关系式,根据函数的性质即可求出y的最小值及对应的x的值.
(3)在上面两个题中,已经求得了PD、PC的表达式,可根据:
①PD=PC,②PD=DC,③PC=CD,三个不同的等量关系,列方程求出对应的x的值,即AP的长.
点评:此题主要考查了矩形的性质、相似三角形的判定和性质、勾股定理以及等腰三角形的构成条件等重要知识,同时还考查了分类讨论的数学思想,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案