精英家教网 > 初中数学 > 题目详情

作业宝在直角三角形ABC中,∠C=90°,点O为AB上的一点,以点O为圆心,OA为半径的圆弧与BC相切于点D,交AC于点E,连接AD.
(1)求证:AD平分∠BAC;
(2)已知AE=2,DC=数学公式,求圆弧的半径.

(1)证明:连接OD,
∵OA为半径的圆弧与BC相切于点D,
∴OD⊥BC,
∴∠ODB=∠C=90°,
∴OD∥AC,
∴∠ODA=∠CAD,
又∵OA=OD,
∴∠ODA=∠OAD,
∴∠CAD=∠OAD,
∴AD平分∠BAC.

(2)解:过O作OH⊥AC于H,
∵OH⊥AC,OH过O,
∴AH=HE=AE=1,
∵OD∥AC,OH⊥AC,∠C=90°,
∴OH∥CD,
∵OD∥AC,
∴四边形OHCD是矩形,
∴OH=DC=
∴在Rt△AOH中,由勾股定理得:OA===2,
即圆弧的半径是2.
分析:(1)连接OD,求出∠ODC=90°,推出OD∥AC,TUIC∠DAC=∠ODA,根据等腰三角形性质推出∠ODA=∠DAO=∠DAC,即可推出答案;
(2)过过O作OH⊥AC于H,根据垂径定理求出AE,得出矩形OHCD,求出OH,在△AOH中,根据勾股定理求出半径即可.
点评:本题考查了切线性质,勾股定理,等腰三角形性质,平行线的性质和判定等知识点,主要考查学生综合运用性质进行推理的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

6、如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是
4

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在直角三角形ABC中,∠C=90°,AC=4,cosA=
23
,那么AB=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角三角形ABC中,∠C=90°,∠A=30°,AC=4,将△ABC绕点A逆时针旋转60°,精英家教网使点B落在点E处,点C落在点D处.P、Q分别为线段AC、AD上的两个动点,且AQ=2PC,连接PQ交线段AE于点M.
(1)设AQ=x,△APQ面积为y,求y关于x的函数关系式,并写出它的定义域;
(2)若以点P为圆心,PC为半径的圆与边AB相切,求AQ的长;
(3)是否存在点Q,使得△AQM、△APQ和△APM这三个三角形中一定有两个三角形相似?若存在请求出AQ的长;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角三角形ABC中,∠C=90°,三内角∠A,∠B,∠C的对边分别是a,b,c,若a=15,c=25,则b=
20
20

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角三角形ABC中,∠C=90°,AC=20,BC=10,PQ=AB,P,Q两点分别在线段AC和过点A且垂直于AC的射线AM上运动,且点P不与点A,C重合,那么当点P运动到什么位置时,才能使△ABC与△APQ全等?

查看答案和解析>>

同步练习册答案