如图,直线y=-x+4与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.
(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;
(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?
(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a<4),正方形OCMD与△AOB重叠部分的面积为S.试求S与a的函数关系式并画出该函数的图象.
|
解:(1)设点M的横坐标为x,则点M的纵坐标为-x+4(0<x<4,x>0,-x+4>0); 则:MC=|-x+4|=-x+4,MD=|x|=x; ∴C四边形OCMD=2(MC+MD)=2(-x+4+x)=8 ∴当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于8; (2)根据题意得:S四边形OCMD=MC·MD=(-x+4)·x=-x2+4x=-(x-2)2+4 ∴四边形OCMD的面积是关于点M的横坐标x(0<x<4)的二次函数,并且当x=2,即当点M运动到线段AB的中点时,四边形OCMD的面积最大且最大面积为4; (3)如图,当0<a≤2时,
如图,当2≤a<4时,
∴S与a的函数的图象如下图所示:
|
科目:初中数学 来源: 题型:
(11·漳州)(满分13分)如图,直线y=-2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD.
(1)填空:点C的坐标是(_ ▲ ,_ ▲ ),
点D的坐标是(_ ▲ ,_ ▲ );
(2)设直线CD与AB交于点M,求线段BM的长;
(3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,
请求出所有满足条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源:2012届黑龙江大庆初三模拟数学试卷三(带解析) 题型:解答题
如图,直线y=x-1和抛物线y=x 2+bx+c都经过点A(1,0),B(3,2).
【小题1】求抛物线的解析式;
【小题2】求不等式x2+bx+c<x-1的解集(直接写出答案).
【小题3】设直线AB交抛物线对称轴与点D,请在对称轴上求一点P(D点除外),使△PBD为等腰三角形.(直接写出点P的坐标,不写过程![]()
查看答案和解析>>
科目:初中数学 来源:2013届山东省济宁地区九年级第一学期期末考试数学试卷(带解析) 题型:解答题
如图,直线y=2x-2与x轴交于点A,抛物线y=ax2+bx+c的对称轴是直线x=3,抛物线经过点A,且顶点P在直线y=2x-2上.![]()
(1)求A、P两点的坐标及抛物线y=ax2+bx+c的解析式;
(2)画出抛物线的草图,并观察图象写出不等式ax2+bx+c>0的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com