精英家教网 > 初中数学 > 题目详情

如图,Rt△ABC的两直角边AC=8cm,BC=6cm,D为AC上一点,将△ABC折叠,使点A与点B重合,折痕为DE,则CD的长为________cm.


分析:设CD=x,先根据翻折变换的性质可得到AD=BD,则BD=8-x,再根据勾股定理即可求解.
解答:设CD=x,则BD=8-x,
∵△BDE是△ADE沿直线DE翻折而成,
∴AD=BD=8-x,
∵△BCD是直角三角形,
∴BC2=BD2-CD2,即62=(8-x)2-x2
解得x=
故答案为:
点评:本题主要考查了折叠问题和勾股定理的综合运用.解题过程中应注意折叠是一种对称变换,它属于轴对称,对应边和对应角分别相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线y=
k
x
(x>0)
的图象经过点A,若△BEC的面积为4,则k等于(  )
A、16B、8C、4D、2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC的两直角边分别为1,2,以Rt△ABC的斜边AC为一直角边,另一直角边为1画第二个△ACD;在以△ACD的斜边AD为一直角边,另一直角边长为1画第三个△ADE;…,依此类推,第n个直角三角形的斜边长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC的斜边AB=10cm,cosA=
35
,则BC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广安)如图,Rt△ABC的边BC位于直线l上,AC=
3
,∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右无滑动地旋转,当点A第3次落在直线l上时,点A所经过的路线的长为
(4+
3
)π
(4+
3
)π
(结果用含有π的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC的一条直角边AB是⊙O的直径,AB=8,斜边交⊙O于D,∠A=30°,求阴影部分的面积.

查看答案和解析>>

同步练习册答案