证明:

(1)取AB中点P,连MP,NP,
∵M为BD的中点,
∴PM∥AD,
同理NP∥BC,
∵AD∥BC,
∴N、M、P三点共线,
∴MN∥BC.
(2)法一:∵MN∥BC,N、M分别为AC、BD的中点,
∴P是AB的中点,
∴PN=

BC,PM=

AD,
∴MN=

(BC-AD).

法二:如图所示,连接AM并延长,交BC于点G.
∵AD∥BC,
∴∠ADM=∠GBM,∠MAD=∠MGB,
又∵M为BD中点,
∴△AMD≌△GMB.
∴BG=AD,AM=MG.
在△AGC中,MN为中位线,
∴MN=

GC=

(BC-BG)=

(BC-AD),
即MN=

(BC-AD).
分析:(1)取AB中点P,连MP,NP,证N、M、P三点共线即可;
(2)连接AM并延长,交BC于点G,证明△AMD≌△GMB,根据中位线定理即可证明;
点评:本题考查了梯形及三角形中位线定理,难度较大,关键是通过巧妙地作辅助线进行证明.