精英家教网 > 初中数学 > 题目详情

如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,
(1)求证:△AOE≌△COF;
(2)若AM:DM=2:3,△ONC的面积为2cm2,求△AEM的面积.

(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,OA=OC,
∴∠E=∠F,
在△AOE和△COF中,

∴△AOE≌△COF(AAS);

(2)解:∵AB∥CD,
∴△AEM∽△DFM,
∴EM:FM=AM:DM=2:3,
∵△AOE≌△COF,
∴OE=OF,
∵AD∥BC,
∴∠AMO=∠CNO,
在△AOM和△CON中,

∴△AOM≌△CON(AAS),
∴OM=ON,
即EM=FN,
设EM=2x,FM=3x,则FN=2x,OM=ON=MN=(FM-FN)=x,
∴EM:OM=2x:x=4,
∵S△ONC=2cm2
∴S△OAM=2cm2
∴S△AEM=4S△ONC=4×2=8(cm2).
分析:(1)由四边形ABCD是平行四边形,即可得AB∥CD,OA=OC,由平行线的性质,可得∠E=∠F,然后由AAS即可判定△AOE≌△COF;
(2)由△AOE≌△COF,可得OE=OF,易证得△AOM≌△CON,△AEM∽△DFM,即可得OM=ON,EM:FM=AM:DM=2:3,即可得EM:OM=4,又由△ONC的面积为2cm2,根据等高三角形的面积比等于对应底的比,即可求得△AEM的面积.
点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质、平行四边形的性质以及三角形面积的求解方法.此题难度较大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,在平行四边形ABCD中,EF∥AD,GH∥AB,EF、GH相交于点O,则图中共有
9
个平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F,证明:四边形DFBE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.点M是边AD上一点,且DM:AD=1:3.点E、F分别从A、C同时出发,以1厘米/秒的速度分别沿AB、CB向点B运动(当点F运动到点B时,点E随之停止运动),EM、CD精英家教网的延长线交于点P,FP交AD于点Q.设运动时间为x秒,线段PC的长为y厘米.
(1)求y与x之间函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,PF⊥AD?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,AB=2
2
AO=
3
OB=
5
,则下列结论中不正确的是(  )
A、AC⊥BD
B、四边形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•同安区一模)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为
4cm
4cm

查看答案和解析>>

同步练习册答案