精英家教网 > 初中数学 > 题目详情

已知矩形ABCD和点P,当点P在如图(1)中的位置时,则有结论:S△PBC=S△PAC+S△PCD.理由:过点P作EF垂直BC,分别交AD、BC于E、F两点.

∵S△PBC+S△PADBC·PF+AD·PE=BC(PF+PE)=BC·EF=S矩形ABCD,又∵S△PAC+S△PCD+S△PADS矩形ABCD

∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD.∴S△PBC=S△PAC+S△PCD

请你参考上述信息,当点P分别在图(2)(3)中的位置时,S△PBC、S△PAC、S△PCD又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.

答案:
解析:

  [探究过程]仔细阅读图(1)的证明过程,弄清问题的实质、解题的策略,再猜想验证图(2)、(3)的变化规律.易发现本题猜想结果:图(2)结论S△PBC=S△PAC+S△PCD;图(3)结论S△PBC=S△PAC-S△PCD

  

  [探究评析]在运动变化的题型中,要掌握好“变”与“不变”,观察动态变化过程中不变的量,学会从不同的情境中找出完全相同(或类似)的解法、思路,在新的情境中提出新猜想去解决新的问题.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知矩形ABCD和点P,当点P在图1中的位置时,则有结论:S△PBC=S△PAC+S△PCD
理由:过点P作EF垂直BC,分别交AD、BC于E、F两点.
∵S△PBC+S△PAD=
1
2
BC•PF+
1
2
AD•PE=
1
2
BC(PF+PE)=
1
2
BC•EF=
1
2
S矩形ABCD
又∵S△PAC+S△PCD+S△PAD=
1
2
S矩形ABCD,∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD,∴S△PBC=S△PAC+S△PCD
请你参考上述信息,当点P分别在图2,图3中的位置时,S△PBC、S△PAC、S△PCD又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)时,易证得结论:PA2+PC2=PB2+PD2,请你探究:当点P分别在图(2)、图(3)中的位置时,PA2、PB2、PC2和PD2又有怎样的数量关系请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.
答:对图(2)的探究结论为
PA2+PC2=PB2+PD2

对图(3)的探究结论为
PA2+PC2=PB2+PD2

证明:如图(2)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知矩形ABCD和点P,当点P在边BC上任一位置(如图①所示)时,易证得结论:PA2+PC2=PB2+PD2
以下请你探究:当P点分别在图②、图③中的位置时,即P在矩形ABCD的内部和外部时,线段PA2,PB2,PC2,PD2又有怎样的数量关系?请你写出对上述两种情况的探究结论,并证明图②(P在矩形ABCD的内部)的结论.

答:对图②的探究结论为
PA2+PC2=PB2+PD2
PA2+PC2=PB2+PD2
,对图③的探究结论为
PA2+PC2=PB2+PD2
PA2+PC2=PB2+PD2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知矩形ABCD和点P,当点P在图1中的位置时,则有结论:S△PBC=S△PAC+

S△PCD   理由:过点P作EF垂直BC,分别交AD、BC于E、F两点.

∵ S△PBC+S△PAD=BC·PF+AD·PE=BC(PF+PE)=BC·EF=S矩形ABCD

又∵ S△PAC+S△PCD+S△PAD=S矩形ABCD

∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD

∴ S△PBC=S△PAC+S△PCD

请你参考上述信息,当点P分别在图2、图3中的位置时,S△PBC、S△PAC、S△PCD

有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给

予证明.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年辽宁大石桥市九年级中考模拟(四)数学试卷(解析版) 题型:解答题

已知矩形ABCD和点P,当点P在图1中的位置时,则有结论:S△PBC=S△PAC+

S△PCD   理由:过点P作EF垂直BC,分别交AD、BC于E、F两点.

∵ S△PBC+S△PAD=BC·PF+AD·PE=BC(PF+PE)=BC·EF=S矩形ABCD

又∵ S△PAC+S△PCD+S△PAD=S矩形ABCD

∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD

∴ S△PBC=S△PAC+S△PCD

请你参考上述信息,当点P分别在图2、图3中的位置时,S△PBC、S△PAC、S△PCD

有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给

予证明.

 

查看答案和解析>>

同步练习册答案