精英家教网 > 初中数学 > 题目详情
探索规律,由※组成的图案和算式,解答问题:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
(1)请猜想1+3+5+7+9+…+19=
(2)请猜想1+3+5+7+9+…+(2n﹣1)=
解:由图案1,3,5,7,9是连续的几个奇数;
由算式:1+3=22,从1开始连续2项奇数和;
1+3+5=32,从1开始连续3项奇数和;
1+3+5+7=16=42,从1开始连续4项奇数和;
1+3+5+7+9=25=52,从1开始连续5项奇数和;
可以得出规律:从1开始连续n个奇数的和等于n2
所以:(1)1+3+5+7+9+…+19=102,从1开始连续10个奇数相加;
(2)1+3+5+7+9+…+(2n﹣1)=n2,从1开始n个奇数相加.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、探索规律,由※组成的图案和算式,解答问题:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
(1)请猜想1+3+5+7+9+…+19=
102

(2)请猜想1+3+5+7+9+…+(2n-1)=
n2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网探索规律
观察下面由*组成的图案和算式,解答问题:
求:(1)1+3+5+7+9+…+99 的值;
(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

32、探索规律:观察下面由※组成的图案和算式,解答问题:
1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52
(1)请猜想1+3+5+7+9+…+19=
100

(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=
(n+2)2

(3)请用上述规律计算:103+105+107+…+2003+2005.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

探索规律,由※组成的图案和算式,解答问题:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
(1)请猜想1+3+5+7+9+…+19=______;
(2)请猜想1+3+5+7+9+…+(2n-1)=______.

查看答案和解析>>

同步练习册答案