某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:
锻炼时间(小时) | 5 | 6 | 7 | 8 |
人数 | 2 | 6 | 5 | 2 |
则这15名同学一周在校参加体育锻炼的时间的中位数和众数分别为( )
A. 6,7 B. 7,7 C. 7,6 D. 6,6
科目:初中数学 来源:河南省南阳市邓州市2018届中考模拟数学试卷 题型:单选题
如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是( )
A. 2 B. 4 C. 8 D. 16
查看答案和解析>>
科目:初中数学 来源:2018年秋北师大版八年级上册 数学 第六章 数据的分析 单元测试卷 题型:单选题
某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( )
![]()
A. 7分 B. 8分 C. 9分 D. 10分
查看答案和解析>>
科目:初中数学 来源:2018年秋北师大版八年级数学上册第一学期期末测试卷 题型:填空题
如图,在平面直角坐标系中,点P(x,y)是直线y=-x+6上第一象限的点,点A的坐标是(4,0),O是坐标原点,△PAO的面积为S,则S关于x的函数关系式是____________________.
![]()
查看答案和解析>>
科目:初中数学 来源:2018年秋北师大版八年级数学上册第一学期期末测试卷 题型:单选题
有下面的判断:
①若△ABC中,a2+b2≠c2,则△ABC不是直角三角形;
②△ABC是直角三角形,∠C=90°,则a2+b2=c2;
③若△ABC中,a2-b2=c2,则△ABC是直角三角形;
④若△ABC是直角三角形,则(a+b)(a-b)=c2.
其中判断正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源:浙教版九年级数学上第一章 二次函数 单元测试卷 题型:解答题
已知二次函数y=(t+1)x2+2(t+2)x+
在x=0和x=2时的函数值相等
(1)求二次函数的解析式,并作图象;
(2)若一次函数y=kx+6的图象与二次函数的象都经过点A(﹣3,m),求m和k的值.
![]()
查看答案和解析>>
科目:初中数学 来源:浙教版九年级数学上第一章 二次函数 单元测试卷 题型:填空题
若函数y=a(x-h)2+k的图象经过原点,最小值为8,且形状与抛物线y=-2x2-2x+3相同,则此函数关系式__.
查看答案和解析>>
科目:初中数学 来源:2017-2018学年山东省青岛市市北区九年级(下)期中数学模拟试卷(二) 题型:解答题
阅读下列材料,完成任务:
自相似图形
定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.
任务:
(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为 ;
(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为 ;
(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).
请从下列A、B两题中任选一条作答:我选择 题.
A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);
②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);
B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示);
②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).
![]()
查看答案和解析>>
科目:初中数学 来源:湘教版数学九年级上册全册复习练习题 题型:填空题
如图,以O为位似中心,把五边形ABCDE的面积扩大到原来的4倍,得到五边形A1B1C1D1E1,则OD︰OD1=________.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com