精英家教网 > 初中数学 > 题目详情

如图,在四边形ABCD中,BE=DF,AC和EF互相平分,∠B=90°.
求证:四边形ABCD为矩形.

证明:如图,连接AF、CE,
∵AC和EF互相平分,
∴四边形AECF是平行四边形,
∴AE=CF,AE∥CF,
∵BE=DF,
∴BE+AE=DF+CF,
即AB=CD,
∵AE∥CF,
∴四边形ABCD是平行四边形,
∵∠B=90°,
∴平行四边形ABCD是矩形.
分析:连接AF、CE,根据对角线互相平分的四边形是平行四边形判断出四边形AECF是平行四边形,根据平行四边形的对边平行且相等可得AE=CF,AE∥CF,然后求出AB=CD,再求出四边形ABCD是平行四边形,然后根据有一个角是直角的平行四边形是矩形证明.
点评:本题考查了矩形的判定,平行四边形的判定与性质,作辅助线构造出平行四边形并利用平行四边形的性质解答是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案