精英家教网 > 初中数学 > 题目详情

已知:二次函数y=-x2+2x+3
(1)用配方法将函数关系式化为y=a(x-h)2+k的形式,并指出函数图象的对称轴和顶点坐标;
(2)画出所给函数的图象;
(3)观察图象,指出使函数值y>3的自变量x的取值范围.

解:(1)y=-x2+2x+3=-(x2-2x)+3=-(x-1)2+4,即y=-(x-1)2+4,该抛物线的对称轴是x=1,顶点坐标是(1,-4);

(2)由抛物线解析式y=-x2+2x+3知,该抛物线的开口方向向下,且与y轴的交点是(0,3).
∵y=-x2+2x+3=-(x+1)(x-3),
∴该抛物线与x轴的两个交点横坐标分别是-1、3.
又由(1)知,该抛物线的对称轴是x=1,顶点坐标是(1,-4);
所以其图象如图所示:

(3)根据图象知,当y>3时,0<x<2.
分析:(1)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.
(2)根据对称轴,顶点坐标,抛物线与y轴的交点画出图象;
(3)根据图象直接回答问题.
点评:二次函数的解析式有三种形式:
(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);
(2)顶点式:y=a(x-h)2+k;
(3)交点式(与x轴):y=a(x-x1)(x-x2).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:二次函数的表达式为y=2x2+4x-1.
(1)设这个函数图象的顶点坐标为P,与y轴的交点为A,求P、A两点的坐标;
(2)将二次函数的图象向上平移1个单位,设平移后的图象与x轴的交点为B、C(其中点B在点C的左侧),求B、C两点的坐标及tan∠APB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标是(-2,0),点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OC<OB)是方程x2-10x+24=0的两个根.
(1)求B、C两点的坐标;
(2)求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2-2(m-1)x-1-m的图象与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,且满足
1
AO
-
1
OB
=
2
CO

(1)求这个二次函数的解析式;
(2)是否存在着直线y=kx+b与抛物线交于点P、Q,使y轴平分△CPQ的面积?若存在,求出k、b应满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与y轴精英家教网交于点C,点D(-2,-3)在抛物线上.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:
x 0 1 2 3 4 5
y 3 0 -1 0 m 8
(1)可求得m的值为
3
3

(2)求出这个二次函数的解析式;
(3)当0<x<3时,则y的取值范围为
-1≤y<3
-1≤y<3

查看答案和解析>>

同步练习册答案