精英家教网 > 初中数学 > 题目详情

已知P(m,2)是反比例函数数学公式上一的点,当y≤2时,x的取值范围是________.

x≤-2或x>0
分析:先把点P(m,2)代入反比例函数y=-求出m的值,再画出函数图象,根据函数图象即可得出结论.
解答:解:∵P(m,2)是反比例函数上一的点,
∴2=-,解得m=-2,
∴P(-2,2),
反比例函数y=-的图象如图所示:
由图可知,当x≤-2或x>0时,y≤2.
故答案为:x≤-2或x>0.
点评:本题考查的是反比例函数图象上点的坐标特点,根据题意画出函数图象,利用数形结合求解是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知P(m,a)是抛物线y=ax2上的点,且点P在第一象限.
(1)求m的值
(2)直线y=kx+b过点P,交x轴的正半轴于点A,交抛物线于另一点M.
①当b=2a时,∠OPA=90°是否成立?如果成立,请证明;如果不成立,举出一个反例说明;
②当b=4时,记△MOA的面积为S,求
1s
的最大值.

查看答案和解析>>

科目:初中数学 来源:第27章《二次函数》中考题集(44):27.3 实践与探索(解析版) 题型:解答题

已知P(m,a)是抛物线y=ax2上的点,且点P在第一象限.
(1)求m的值
(2)直线y=kx+b过点P,交x轴的正半轴于点A,交抛物线于另一点M.
①当b=2a时,∠OPA=90°是否成立?如果成立,请证明;如果不成立,举出一个反例说明;
②当b=4时,记△MOA的面积为S,求的最大值.

查看答案和解析>>

科目:初中数学 来源:第20章《二次函数和反比例函数》中考题集(41):20.5 二次函数的一些应用(解析版) 题型:解答题

已知P(m,a)是抛物线y=ax2上的点,且点P在第一象限.
(1)求m的值
(2)直线y=kx+b过点P,交x轴的正半轴于点A,交抛物线于另一点M.
①当b=2a时,∠OPA=90°是否成立?如果成立,请证明;如果不成立,举出一个反例说明;
②当b=4时,记△MOA的面积为S,求的最大值.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(42):2.4 二次函数的应用(解析版) 题型:解答题

已知P(m,a)是抛物线y=ax2上的点,且点P在第一象限.
(1)求m的值
(2)直线y=kx+b过点P,交x轴的正半轴于点A,交抛物线于另一点M.
①当b=2a时,∠OPA=90°是否成立?如果成立,请证明;如果不成立,举出一个反例说明;
②当b=4时,记△MOA的面积为S,求的最大值.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2006•厦门)已知P(m,a)是抛物线y=ax2上的点,且点P在第一象限.
(1)求m的值
(2)直线y=kx+b过点P,交x轴的正半轴于点A,交抛物线于另一点M.
①当b=2a时,∠OPA=90°是否成立?如果成立,请证明;如果不成立,举出一个反例说明;
②当b=4时,记△MOA的面积为S,求的最大值.

查看答案和解析>>

同步练习册答案