证明:(1)∵AD∥BC,AB⊥BC,∠MDB=∠ADB,
∴∠ADB=∠DBC=∠MDB,∠A=90°,

∴BM=DM,
又∵BD
2=AD•BC,即

,
∴△ADB∽△DBC,
∴∠BDC=∠A=90°,
∴∠C=∠MDC=90°-∠DBC,
∴DM=CM,
∴BM=CM,
(2)∵∠MDC+∠DFB=90°,
∴∠DFB=∠DBC,
∴Rt△DFB∽Rt△DBC,
∴

,
∴DF•DC=BD
2∵BD
2=AD•BC=AD•BC=AD•﹙2DM﹚=2AD•DM,
∴2AD•DM=DF•DC.
分析:(1)首先证明BM=DM,再根据已知条件证明△ADB∽△DBC,由相似的性质可得∠BDC=∠A=90°,进而证明DM=CM,所以BM=CM;
(2)由(1)可知M是BC的中点,所以DM是三角形BDC斜边上的中线,由直角三角形的性质可知BC=2DM,证明Rt△DFB∽Rt△DBC可得

,所以BD
2=DF•DC,又因为BD
2=AD•BC,所以BD
2=AD•BC=AD•﹙2DM﹚=2AD•DM.
点评:本题考查了梯形的性质、直角三角形的性质、相似三角形的判定和性质以及比例式的证明,题目的综合性很强,难度不小.