精英家教网 > 初中数学 > 题目详情

已知:直线y=-数学公式x+1与x轴、y轴分别交于A、B两点,以AB为边在第一象限内作正三角形ABC,⊙O′为△ABC的外接圆,与x轴交于另一点E.
(1)求C点坐标.
(2)求过点C与AB中点D的一次函数的解析式.
(3)求过E、O′、A三点的二次函数的解析式.

解:(1)∵直线y=-x+1与x轴、y轴分别交于A、B两点,
∴A(,0),B(0,1),
在Rt△ABO中,
∵AB==2,
∴tan∠BAO==
∴∠BAO=30°
又∵△ABC是等边三角形
∴AC=AB=2,∠BAC=60°,
∴∠OAC=90°
∴CA∥OB,
∴C点坐标为(,2);

(2)∵D是AB的中点,过D作DF∥OB,交OA于F,
则DF=OB=,OF=OA=
∴D点坐标为(),
设过C、D两点的一次函数解析式为y=kx+b(k≠0),
,解得
∴所求一次函数的解析式为y=x-1;

(3)过点B作BH⊥AC于点H,
∵△ABC是等边△,
∴BH是AC的垂直平分线,
∴BF过点O′,
∵B(0,1),
∴当y=1时,x=
∴O′(,1),
∵CA∥BO,BH⊥AC,
∴BH⊥OB,且过⊙O′半径的外端,
∴OB是⊙O′的切线,
∴OB2=OE•OA,即1=OE•,解得OE=
∴E(,0),
设过E、O′、A三点的抛物线为y=ax2+bx+c,将三点坐标代入得


解得
∴所求二次函数的解析式为y=-3x2+4x-3.
分析:(1)先根据直线y=-x+1与x轴、y轴分别交于A、B两点求出A、B两点的坐标,在Rt△ABO中,根据勾股定理求出AB的长,故可得出tan∠BAO的值,可得出∠BAO的度数,判断出△ABC的形状,由平行线的判定定理得出CA∥OB,由此即可得出C点坐标;
(2)过D作DF∥OB,交OA于F,由点D是AB的中点可求出D点坐标,设过C、D两点的一次函数解析式为y=kx+b(k≠0),再把C、D两点的坐标代入即可求出此函数的解析式;
(3)过点B作BH⊥AC于点H,根据△ABC是等边△,可知BH是AC的垂直平分线,BH过点O′,故点B与点O′
的纵坐标相等,故可得出O′的坐标,再由CA∥BO,BH⊥AC可知BH⊥OB且过⊙O′半径的外端,故可得出OB是⊙O′的切线,由切线长定理可得OB2=OE•OA,进而可求出OE的长,故可得出E点坐标,
设过E、O′、A三点的抛物线为y=ax2+bx+c(a≠0),将三点坐标代入即可求出abc的值,故可得出结论.
点评:本题考查的是一次函数综合题,涉及到等边三角形的判定与性质、切线的判定与性质、用待定系数法求一次函数及二次函数的解析式等知识,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:直线y=-
n
n+1
x+
2
n+1
(n为正整数)与两坐标轴围成的三角形面积为Sn,则S1+S2+S3+…+S2011=(  )
A、
1005
2011
B、
2011
2012
C、
2010
2011
D、
2011
4024

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,已知两直线a,b相交于O,∠2=30°,则∠1=
150
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•普陀区一模)在平面直角坐标系中,△ABC的顶点分别是A(-1,0),B(3,0),C(0,2),已知动直线y=m(0<m<2)与线段AC、BC分别交于D、E两点,而在x轴上存在点P,使得△DEP为等腰直角三角形,那么m的值等于
4
3
或1
4
3
或1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:直线y=-2x+4交x轴于点A,交y轴于点B,点C为x轴上一点,AC=1,且OC<OA.抛物线y=ax2+bx+c(a≠0)经过点A、B、C.
(1)求该抛物线的表达式;
(2)点D的坐标为(-3,0),点P为线段AB上的一点,当锐角∠PDO的正切值是
12
时,求点P的坐标;
(3)在(2)的条件下,该抛物线上的一点E在x轴下方,当△ADE的面积等与四边形APCE的面积时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:直线y=kx+b的图象过点A(-3,1);B(-1,2),
(1)求:k和b的值;
(2)求:△AOB的面积(O为坐标原点);
(3)在x轴上有一动点C使得△ABC的周长最小,求C点坐标.

查看答案和解析>>

同步练习册答案