精英家教网 > 初中数学 > 题目详情

如图,AB是⊙O的直径,过点B作⊙O的切线BM,点P在右半圆上移动(点P与点A,B不重合),过点P作PC⊥AB,垂足为C;点Q在射线BM上移动(点M在点B的右边),且在移动过程中保持OQ∥AP.
(1)若PC,QO的延长线相交于点E,判断是否存在点P,使得点E恰好在⊙O上?若存在,求出∠APC的大小;若不存在,请说明理由;
(2)连接AQ交PC于点F,设数学公式,试问:k的值是否随点P的移动而变化?证明你的结论.

解:(1)解法一:当点E在⊙O上时,设OQ与⊙O交于点D,
∵AB⊥PC,
=
∵AP∥OQ,
∴∠APE=∠PEQ.
=
又∠AOE=∠BOD,=



解法二:设点E在⊙O上时,由已知有EC=CP,
∴△EOC≌△PAC.
∴OC=CA,OE=AP.
在Rt△APC中,
∴∠APC=30°.

(2)k值不随点P的移动而变化.理由是:
∵P是⊙O右半圆上的任意一点,且AP∥OQ,
∴∠PAC=∠QOB.
∵BM是⊙O的切线,
∴∠ABQ=90°.
又∵PC⊥AB,
∴∠ACP=90°.
∴∠ACP=∠ABQ.
∴△ACP∽△OBQ.

又∵∠CAF=∠BAQ,∠ACF=∠ABQ=90°,
∴△ACF∽△ABQ.

又∵AB=2OB,

∴PC=2CF即PF=CF.
=
即k值不随点P的移动而变化.
分析:(1)若存在点E在⊙O上时,由已知,根据垂径定理知EC=CP,∠ECO=∠ACP=90°,由两直线平行,内错角相等知,∠E=∠P,由SAS知,△EOC≌△PAC,OC=CA,OE=AP则在Rt△APC中,由正弦的概念知,由特殊角的三角函数值知∠APC=30°;
(2)由于P是⊙O右半圆上的任意一点,且AP∥OQ,由两直线平行,同位角相等知,∠PAC=∠QOB由BM是⊙O的切线,由切线的性质知,∠ABQ=90°,已知中有PC⊥AB,即∠ACP=∠ABQ=90°,∴△ACP∽△OBQ得到,,又有∠CAF=∠BAQ,∠ACF=∠ABQ=90°,故由△ACF∽△ABQ可知,又因为AB=2OB,则得到PC=2CF,即PF=CF,所以有=,即k值不随点P的移动而变化.
点评:本题利用了切线的性质,平行线的性质,相似三角形和全等三角形的判定和性质,正弦的概念,特殊角的三角函数值求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小亮家窗户上的遮雨罩是一种玻璃钢制品,它的顶部是圆柱侧面的一部分(如图1),它的侧面边缘上有两条圆弧(如图2),其中顶部圆弧AB的圆心O1在竖直边缘AD上,另一条圆弧BC的圆心O2在水平边缘DC的延长线上,其圆心角为90°,请你根据所标示的尺寸(单位:cm)解决下面的问题.(玻璃钢材料的厚度忽略不计,π取3.1416)
(1)计算出弧AB所对的圆心角的度数(精确到0.01度)及弧AB的长度;(精确到0.1cm)
(2)计算出遮雨罩一个侧面的面积;(精确到1cm2
(3)制做这个遮雨罩大约需要多少平方米的玻璃钢材料.(精确到精英家教网0.1平方米)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步练习册答案