精英家教网 > 初中数学 > 题目详情

如图,在矩形ABCD中,对角线AC、BD交于点O,∠AOD=2∠DOC,DE平分∠ADC,求∠EOC的度数.

解:由∠AOD=2∠DOC,∠AOD+∠DOC=180°得:
∠AOD=120°,∠DOC=60°,
∵OD=OC,
∴∠DCO=60°,
∴∠OCE=30°,
∵DE平分∠ADC,
∴∠ADE=∠CDE=∠DEC=45°,
∴CD=CE=OC,
∴∠CEO=∠EOC=75°,
分析:首先根据∠AOD=2∠DOC计算出∠DOC的度数,进而可以计算出∠OCE的度数,再根据角平分线的性质可知∠ADE=∠EDC=45°,利用平行线的性质证出EC=DC,最后根据等腰三角形的性质得到∠CEO=∠EOC,利用三角形内角和定理可以得到答案.
点评:此题主要考查了矩形的性质,角平分线的性质,等边三角形的判定与性质,解决此题的关键是证明CD=CE=OC.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案