精英家教网 > 初中数学 > 题目详情
已知,如图,直线y=
3
2
x+
9
2
与x轴、y轴分别相交于A、B两点,与双曲线y=
k
x
精英家教网在第一象限内交于点C,S△AOC=9.
(1)求S△AOB
(2)求k的值;
(3)D是双曲线y=
k
x
上一点,DE垂直x轴于E,若以O、D、E为顶点的三角形与△AOB相似,试求点D的坐标.
分析:(1)求出A、B两点的坐标,从而知道AO,BO的长度,三角形AOB又是直角三角形,所以面积可求;
(2)因为S△AOC=9,AO的长已知,所以可求出AO边上的高,即点C的纵坐标,把求出的纵坐标代入直线y=
3
2
x+
9
2
,可得横坐标,所以可求出k的值;
(3)此小题要分类讨论①点D所在的象限不唯一②相似三角形不唯一.
解答:解:(1)∵直线y=
3
2
x+
9
2
与x轴、y轴分别相交于A、B两点,
∴A点的坐标是(-3,0),B点的坐标是(0,
9
2
),
∴AO=3,BO=
9
2

∴S△AOB=
1
2
×3×
9
2

∴S△AOB=
27
4

精英家教网
(2)过点C作CF⊥AO于点F,
∵S△AOC=9.
∴9=AO•CF×
1
2

∴CF=6,
即点C的纵坐标为6,把y=6,代入直线y=
3
2
x+
9
2
得,x=1,
∴C点的坐标为(1,6),
∴k=6×1=6;

(3)设D点的横坐标为x,则纵坐标为
6
x
,DE=
6
x

∴OE=x,DE=
6
x

①当△AOB∽△OED时,
AO
OE
=
BO
DE
,即
3
x
=
9
2
6
x

∴x=±2,∴y=±3,
∴D(2,3),(-2,-3);
②当△AOB∽△DEO时,
AO
DE
=
BO
OE
,即
3
6
x
=
9
2
x

∴x=±3,∴y=±2,
∴D(3,2),(-3,-2);
综上可知:D(2,3),(-2,-3),(3,2),(-3,-2).
点评:本题考查了一次函数的图象和坐标轴围成的三角形的面积和一次函数和反比例函数交点以及相似三角形在函数图象中的运用,并且考查到了相似对应的不唯一性,题目难度不大,具有一定的综合性.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,直线y=
3
3
x+
3
与x轴、y轴分别交于A、B两点,⊙M经过精英家教网原点O及A、B两点.
(1)求以OA、OB两线段长为根的一元二方程;
(2)C是⊙M上一点,连接BC交OA于点D,若∠COD=∠CBO,写出经过O、C、A三点的二次函数的解析式;
(3)若延长BC到E,使DE=2,连接EA,试判断直线EA与⊙M的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•岳阳)已知:如图,直线MN和⊙O切于点C,AB是⊙O的直径,AE⊥MN,BF⊥MN且与⊙O交于点G,垂足分别是E、F,AC是⊙O的弦,
(1)求证:AB=AE+BF;
(2)令AE=m,EF=n,BF=p,证明:n2=4mp;
(3)设⊙O的半径为5,AC=6,求以AE、BF的长为根的一元二次方程;
(4)将直线MN向上平行移动至与⊙O相交时,m、n、p之间有什么关系?向下平行移动至与⊙O相离时,m、n、p之间又有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线y=kx+b经过点A、B.
求:(1)这个函数的解析式;
(2)当x=4时,y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线y=kx+b与x轴交于点A,且与双曲线y=
m
x
交于点B(4,2)和点C(n,-4). 
(1)求直线y=kx+b和双曲线y=
m
x
的解析式;
(2)根据图象写出关于x的不等式kx+b<
m
x
的解集;
(3)点D在直线y=kx+b上,设点D的纵坐标为t(t>0).过点D作平行于x轴的直线交双曲线y=
m
x
于点E.若△ADE的面积为
7
2
,请直接写出所有满足条件的t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线a∥b,∠1=(2x+10)°,∠2=(3x-5)°,那么∠1=
80
80
°.

查看答案和解析>>

同步练习册答案