精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°,
求证:CD是⊙O的切线.

证明:连接OD,
∵∠AOD与∠AED都对,∠AED=45°,
∴∠AOD=2∠AED=90°,
∵四边形ABCD为平行四边形,
∴CD∥AB,
∴∠ODC=∠AOD=90°,
∴DC⊥OD,
则CD为圆O的切线.
分析:连接OD,由同弧所对的圆心角等于圆周角的2倍求出∠AOD为直角,再由平行四边形的对边平行得到DC与AB平行,利用两直线平行内错角相等得到∠ODC为直角,即DC垂直于OD,即可确定出DC为圆的切线.
点评:此题考查了切线的判定,涉及的知识有:圆周角定理,平行四边形的性质,以及平行线的性质,熟练掌握切线的判定方法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案