
解:(1)作BD⊥OC于D,
则四边形OABD是矩形,
∴OD=AB=10,
∴CD=OC-OD=12,
∴OA=BD=

=9,
∴B(10,9);
(2)①由题意知:AM=t,ON=OC-CN=22-2t,
∵四边形OAMN的面积是梯形OABC面积的一半,
∴

,
∴t=6,
②设四边形OAMN的面积为S,则

,
∵0<t≤10,且s随t的增大而减小,
∴当t=10时,s最小,最小面积为54.
③如备用图,取N点关于y轴的对称点N′,连接MN′交AO于点P,

此时PM+PN=PM+PN′=MN′长度最小.
当t=10时,AM=t=10=AB,ON=22-2t=2,
∴M(10,9),N(2,0),
∴N′(-2,0);
设直线MN′的函数关系式为y=kx+b,则

,
解得

,
∴P(0,

),
∴AP=OA-OP=

,
∴动点P的速度为

个单位长度/秒.
分析:(1)由题意可以先构造矩形OABD,然后根据勾股定理进行求解;
(2)是动点型的题要设好未知量:
①AM=t,ON=OC-CN=22-2t,根据四边形OAMN的面积是梯形OABC面积的一半,列出等式求出t值;
②设四边形OAMN的面积为S,用t表示出四边形OAMN的面积,根据一次函数的性质求出最值;
③由题意取N点关于y轴的对称点N′,连接MN′交AO于点P,此时PM+PN=PM+PN′=MN长度最小,表示出点M,N,N′的坐标,设直线MN′的函数关系式为y=kx+b,最后待定系数法进行求解.
点评:此题是一道综合题,难度比较大,考查了勾股定理的应用和待定系数法求函数的解析式,动点型的题是中考的热点,平时要多加练习,注意熟悉这方面的题型.