精英家教网 > 初中数学 > 题目详情

如图,△ABC内接于⊙O,AB=AC,弦AD交BC于点E,AE=4,ED=5,
(1)求证:AD平分∠BDC;
(2)求AC的长;
(3)若∠BCD的平分线CI与AD相交于点I,求证:AI=AC.

证明:(1)∵AB=AC,

∴AD平分∠BDC;

解:(2)∵∠ACB=∠ADB,∠CDA=∠ADB,
∴∠CDA=∠ACB;
∵∠CAE=∠DAC,
∴△ACE∽△ADC;
,即
∴AC=6;

证明:(3)∠AIC=∠ADC+∠DCI,∠ACI=∠BCI+∠ACB;
∴∠AIC=∠ACI;
∴AI=AC.
分析:(1)已知AB=AC,则;由同弧所对的圆周角相等,即可证得所求的结论;
(2)根据(1)得出的相等弧,可知∠ACE=∠CDA,易证得△ACE∽△ADC,可得出关于AC、AE、AD的比例关系式,由此可求出AC的长;
(3)求AI=AC,可证∠AIC=∠ACI;由三角形外角的性质知:∠AIC=∠ICD+∠ADC;而∠ACI=∠ACE+∠ICE;观察两个式子,发现∠ICB和∠ICD是由角平分线所分得的两个等角,∠ACE和∠ADC是同弧所对的圆周角,由此可得出∠ACI=∠AIC,即可证得AI=AC.
点评:此题主要考查了圆周角定理以及相似三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案