精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx(a>0)与反比例函数y=
kx
的图象相交于点A,B.已知点A的坐标为(1,4),点B(t,q)在第三象限内,且△AOB的面积为3(O为坐标原点).
(1)求反比例函数的解析式;
(2)用含t的代数式表示直线AB的解析式;
(3)求抛物线的解析式;
(4)过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,把△AOB绕点O顺时针旋转90°,请在图②中画出旋转后的三角形,并直接写出所有满足△EOC∽△AOB的点E的坐标.
精英家教网
分析:(1)将点A(1,4)代入双曲线y=
k
x
,求得k即可;
(2)设点B(t,
4
t
),t<0,AB所在直线的函数表达式为y=mx+n,将点A、B代入,列出方程组,从而得出直线AB的解析式;
(3)可表示出直线AB与y轴的交点坐标,根据△AOB的面积为3,得2t2+3t-2=0,则求出点B的坐标,将点A,B代入抛物线y=ax2+bx,求出a、b即可;
(4)画出图形,可得出点E的坐标有两个.
解答:精英家教网解:(1)因为点A(1,4)在双曲线y=
k
x
上,
所以k=4.故双曲线的函数表达式为y=
4
x
.(1分)

(2)设点B(t,
4
t
),t<0,AB所在直线的函数表达式为y=mx+n,
则有
4=m+n
4
t
=mt+n

解得m=-
4
t
n=
4(t+1)
t

直线AB的解析式为y=-
4
t
x+
4(t+1)
t
;(3分)

(3)直线AB与y轴的交点坐标为(0,
4(t+1)
t
)

S△AOB=
1
2
×
4(t+1)
t
(1-t)=3

整理得2t2+3t-2=0,
解得t=-2,或t=
1
2
(舍去).
所以点B的坐标为(-2,-2).
因为点A,B都在抛物线y=ax2+bx(a>0)上,
所以
a+b=4
4a-2b=-2

解得
a=1
b=3.

所以抛物线的解析式为y=x2+3x;(4分)

(4)画出图形(2分)
点E的坐标是(8,-2)或(2,-8).(2分)
点评:本题是一道二次函数的综合题,考查了用待定系数法求二次函数的关系式,一次函数的关系式,是中考压轴题,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案