精英家教网 > 初中数学 > 题目详情

如图,以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.

(1)

求AM,DM的长

(2)

试说明AM2=AD·DM

答案:
解析:

(1)

  解:因为正方形ABCD边长为2,P为AB的中点,所以AB=AD=2,PA=AB=1.在Rt△PAD中,PD=.因为PF=PD,所以AF=PF-AP=.因此在正方形AMEF中,AM=AF=-1,DM=AD-AM=2-()

  解题指导:本题的综合性较强,需要利用数形结合的思想,并灵活运用相关知识求出AM,DM的长

(2)

  解:由第(1)得AD=2,DM=3-,所以AD·DM=2(3-)=6-.又因为AM2=(-1)2=6-2,故AM2=AD·DM.

  解题指导:要抓住AD,DM,AM之间的数量关系,通过计算确定


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网附加题
(1)试用一元二次方程的求根公式,探索方程ax+bx+c=0(a≠0)的两根互为倒数的条件是
 

(2)如图.边长为2的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是
 

(3)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).精英家教网
①当t为何值时,四边形PQDC是平行四边形;
②当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2
③是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图在边长为2的正方形ABCD中,E,F,O分别是AB,CD,AD的中点,以O为圆心,以OE为半径画弧EF.P是
EF
上的一个动点,连接OP,并延长OP交线段BC于点K,过点P作⊙O的切线,分别交射线AB于点M,交直线BC于点G.若
BG
BM
=3,则BK=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,边长为2的等边△ABC,射线AB上有一点动P(P不与点A、点B重合),以PC为边作等边△PDC,点D与点A在BC同侧,E为AC中点,连接AD、PE、ED.

(1)试探讨四边形ABCD的形状,并说明理由.
(2)当点P在线段AB上运动,(不与点A、点B重合),若BP=x,四边形APED的面积是否为定值呢?请说明理由.
(3)在第(2)问的条件下,若BP=x,△PDE的面积为y,求出y与x之间的函数关系式,并求出△PDE的面积的最小值,及取得最小值时x的取值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP、CA,过点P作PD⊥OB于点D.
(1)填空:PD的长为
3
2
t
3
2
t
用含t的代数式表示);
(2)求点C的坐标(用含t的代数式表示);
(3)在点P从O向A运动的过程中,△PCA能否成为直角三角形?若能,求t的值.若不能,请说明理由;
(4)填空:在点P从O向A运动的过程中,点C运动路线的长为
2
3
2
3

查看答案和解析>>

同步练习册答案