精英家教网 > 初中数学 > 题目详情
4.看图填空,并在括号内注明理由依据,
解:∵∠1=30°,∠2=30°
∴∠1=∠2
∴AC∥BD(同位角相等,两直线平行)
又AC⊥AE(已知)
∴∠EAC=90°
∴∠EAB=∠EAC+∠1=120°
同理:∠FBG=∠FBD+∠2=120°.
∴∠EAB=∠FBG(等式的性质).
∴AE∥BF(同位角相等,两直线平行)

分析 先根据题意得出∠1=∠2,故可得出AC∥BD,由AC⊥AE可得出∠EAC=90°,故可得出∠EAB=∠EAC+∠1=120°,同理可知∠FBG=∠FBD+∠2=120°,故可得出∠EAB=∠FBG,据此可得出结论.

解答 解:∵∠1=30°,∠2=30°,
∴∠1=∠2.
∴AC∥BD(同位角相等,两直线平行).
又∵AC⊥AE(已知),
∴∠EAC=90°(垂直定义 ),
∴∠EAB=∠EAC+∠1=120°.
同理:∠FBG=∠FBD+∠2=120°.
∴∠EAB=∠FBG(等式的性质).
∴AE∥BF(同位角相等,两直线平行).
故答案为:AC,BD,同位角相等,两直线平行;120;等式的性质;AE,BF.

点评 本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.如图,AB为⊙O的直径,AC为弦,OD∥BC交AC于点D,若BC=20cm,则OD=10cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.在△ABC中,如果∠A:∠B:∠C=1:2:1,那么△ABC的形状是等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.小明、小亮、小刚、小颖一起研究一道数学题,如图,已知EF⊥AB,CD⊥AB,
小明说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”
小亮说:“把小明的已知和结论倒过来,即由∠AGD=∠ACB,
可得到∠CDG=∠BFE.”
小刚说:“∠AGD一定大于∠BFE.”
小颖说:“如果连接GF,则GF一定平行于AB.”
他们四人中,有两个人的说法是正确的.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列各式计算正确的是(  )
A.3$\sqrt{3}$-$\sqrt{3}$=3B.$\sqrt{8}$×$\sqrt{2}$=$\sqrt{8×2}$C.$\frac{3}{2}$$\sqrt{3}$×4$\sqrt{3}$=6$\sqrt{3}$D.2$\sqrt{15}$+2$\sqrt{3}$=$\sqrt{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某校教导处为了了解本校初二学生一天中做家庭作业所用的大致时间(时间以整数记,单位:分钟),对本校的初二学生做了抽样调查,并把调查得到的所有数据(时间)进行整理,分成五个时间段,绘制成统计图(如图所示).请结合统计图中提供的信息,回答下列问题:
(1)本次所抽取样本的容量是多少?
(2)在被调查的学生中,一天做家庭作业所用的大致时间超过120分钟(不包括120分钟)的人数占被调查学生总人数的百分之几?
(3)这次调查得到的所有数据的中位数落在了五个时间段中的哪一段内?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在△ABC中,D,E分别是AB,AC的中点,CD=2DE,延长ED到点F,使得DF=CD,连接BF.
(1)求证:四边形BCDF是菱形;
(2)若CD=2,∠FBC=120°,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=6,BC=8,tanD=2,点E是射线CD上一动点(不与点C重合),将△BCE沿着BE进行翻折,点C的对应点记为点F,
(1)如图1,当点F落在梯形ABCD的中位线MN上时,求CE的长;
(2)如图2,当点E再线段CD上时,设CE=x,$\frac{{S}_{△BFC}}{{S}_{△EFC}}$=y,求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)如图3,连接AC,线段BF与射线CA交于点G,当△CBG是等腰三角形时,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.“红星”饮料开展“7个空瓶换1瓶啤酒”的优惠促销活动,现在已知李老师在活动促销期间共喝掉347瓶“红星”啤酒,问李老师最少用钱买了多少瓶啤酒?(  )
A.296瓶B.298瓶C.300瓶D.302瓶

查看答案和解析>>

同步练习册答案