精英家教网 > 初中数学 > 题目详情

已知:如图,在△ABC中,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在边AC上的点D处,点F在线段AE的延长线上,如果∠FCA=∠B=2∠ACB,AB=5,AC=9.
求:(1)数学公式的值;
(2)CE的值.

解:(1)∵将△ABE沿直线AE折叠,点B恰好落在边AC上的点D处,
∴△ABE≌△ADE,
∴∠B=∠ADE,AB=AD=5,
∵∠FCA=∠B,
∴∠FCA=∠ADE,
∴DE∥CF,
∴△ADE∽△ACF,
==
=

(2)∵∠FCA=2∠ACB,
∴∠ACE=∠FCE.
∵DE∥CF,
∴∠DEC=∠FCE,
∴∠ACE=∠DEC,
∴DE=DC=AC-AD=9-5=4,
∵△ABE≌△ADE,
∴BE=DE=4,∠BAE=∠DAE,
==
解得CE=
分析:(1)先由折叠的性质得出△ABE≌△ADE,则∠B=∠ADE,AB=AD=5,再由∠FCA=∠B,得到∠FCA=∠ADE,判定DE∥CF,则△ADE∽△ACF,根据相似三角形对应边成比例得到==,即可求出的值;
(2)先由已知条件及平行线的性质得出∠ACE=∠DEC,根据等角对等边得到DE=DC=4,再由△ABE≌△ADE,得出BE=DE=4,∠BAE=∠DAE,然后由角平分线的性质得到=,将数值代入,即可求出CE的值.
点评:本题考查了轴对称的性质,相似三角形的判定与性质,平行线的判定与性质,等腰三角形的判定,角平分线的性质等知识,综合性较强,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案